The number of torsion divisors in a strongly F-regular ring is bounded by the reciprocal of F-signature

被引:5
作者
Martin, I [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
关键词
F-signature; F-singularity; divisor; commutative algebra; algebraic geometry;
D O I
10.1080/00927872.2021.1986057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polstra showed that the cardinality of the torsion subgroup of the divisor class group of a local strongly F-regular ring is finite. We expand upon this result and prove that the reciprocal of the F-signature of a local strongly F-regular ring R bounds the cardinality of the torsion subgroup of the divisor class group of R.
引用
收藏
页码:1595 / 1605
页数:11
相关论文
共 16 条
  • [1] Aberbach IM, 2003, MATH RES LETT, V10, P51
  • [2] Bruns W., 1993, COHEN MACAULAY RINGS
  • [3] Carvajal-Rojas, 2017, ARXIV171006887MATHAG
  • [4] FUNDAMENTAL GROUPS OF F-REGULAR SINGULARITIES VIA F-SIGNATURE
    Carvajal-Rojas, Javier
    Schwede, Karl
    Tucker, Kevin
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (04): : 993 - 1016
  • [5] FOSSUM RM, 1973, ERGEBNISSE MATH IHRE, V74
  • [6] Hartshorne R., 1994, P C ALGEBRAIC GEOMET, V8, P287
  • [7] Two theorems about maximal Cohen-Macaulay modules
    Huneke, C
    Leuschke, GJ
    [J]. MATHEMATISCHE ANNALEN, 2002, 324 (02) : 391 - 404
  • [8] DEPTH OF F-SINGULARITIES AND BASE CHANGE OF RELATIVE CANONICAL SHEAVES
    Patakfalvi, Zsolt
    Schwede, Karl
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (01) : 43 - 63
  • [9] Polstra, 2020, ARXIV200204661V2MATH
  • [10] Se, 2016, ARXIV160300334V1MATH