Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments

被引:26
作者
Bacher, Rhonda [1 ]
Leng, Ning [2 ]
Chu, Li-Fang [2 ]
Ni, Zijian [3 ]
Thomson, James A. [2 ]
Kendziorski, Christina [4 ]
Stewart, Ron [2 ]
机构
[1] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
[2] Morgridge Inst Res, Madison, WI 53715 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Time-course; Gene expression; RNA-seq; Segmented regression; R package; Shiny; TIME-COURSE; GENES;
D O I
10.1186/s12859-018-2405-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh-throughput expression profiling experiments with ordered conditions (e.g. time-course or spatial-course) are becoming more common for studying detailed differentiation processes or spatial patterns. Identifying dynamic changes at both the individual gene and whole transcriptome level can provide important insights about genes, pathways, and critical time points.ResultsWe present an R package, Trendy, which utilizes segmented regression models to simultaneously characterize each gene's expression pattern and summarize overall dynamic activity in ordered condition experiments. For each gene, Trendy finds the optimal segmented regression model and provides the location and direction of dynamic changes in expression. We demonstrate the utility of Trendy to provide biologically relevant results on both microarray and RNA-sequencing (RNA-seq) datasets.ConclusionsTrendy is a flexible R package which characterizes gene-specific expression patterns and summarizes changes of global dynamics over ordered conditions. Trendy is freely available on Bioconductor with a full vignette at https://bioconductor.org/packages/release/bioc/html/Trendy.html.
引用
收藏
页数:10
相关论文
共 26 条
  • [21] Spies D., 2017, BRIEF BIOINFORM, pbbxll5
  • [22] Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis
    Spies, Daniel
    Ciaudo, Constance
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2015, 13 : 469 - 477
  • [23] Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    Subramanian, A
    Tamayo, P
    Mootha, VK
    Mukherjee, S
    Ebert, BL
    Gillette, MA
    Paulovich, A
    Pomeroy, SL
    Golub, TR
    Lander, ES
    Mesirov, JP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) : 15545 - 15550
  • [24] Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model
    Sun, Xiaoxiao
    Dalpiaz, David
    Wu, Di
    Liu, Jun S.
    Zhong, Wenxuan
    Ma, Ping
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [25] The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    Trapnell, Cole
    Cacchiarelli, Davide
    Grimsby, Jonna
    Pokharel, Prapti
    Li, Shuqiang
    Morse, Michael
    Lennon, Niall J.
    Livak, Kenneth J.
    Mikkelsen, Tarjei S.
    Rinn, John L.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (04) : 381 - U251
  • [26] Identification of genes periodically expressed in the human cell cycle and their expression in tumors
    Whitfield, ML
    Sherlock, G
    Saldanha, AJ
    Murray, JI
    Ball, CA
    Alexander, KE
    Matese, JC
    Perou, CM
    Hurt, MM
    Brown, PO
    Botstein, D
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (06) : 1977 - 2000