Mapping aluminum tolerance loci in cereals: A tool available for crop breeding

被引:8
作者
Inostroza-Blancheteau, Claudio [3 ]
Soto, Braulio [4 ]
Ibanez, Cristian [5 ]
Ulloa, Pilar [3 ]
Aquea, Felipe [6 ]
Arce-Johnson, Patricio [6 ]
Reyes-Diaz, Marjorie [1 ,2 ]
机构
[1] Univ La Frontera, Ctr Plant Soil Interact, Temuco, Chile
[2] Univ La Frontera, Nat Resources Biotechnol Sci & Technol Bioresourc, Temuco, Chile
[3] Univ La Frontera, Programa Doctorado Ciencias Recursos Nat, Temuco, Chile
[4] Inst Invest Agropecuarias, Unidad Biotecnol Plantas, Ctr Genom Nutr Agro Acuicola, Temuco, Chile
[5] Univ Talca, Inst Biol Vegetal & Biotecnol, Talca, Chile
[6] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Santiago, Chile
关键词
ALMT1; aluminum tolerance; cereals; marker-assisted selection; organic acid; QUANTITATIVE-TRAIT LOCI; FEATURE POLYMORPHISM DISCOVERY; MARKER-ASSISTED SELECTION; TRITICUM-AESTIVUM L; MOLECULAR MARKERS; ALMT1; GENE; MALATE TRANSPORTER; ORGANIC-ACIDS; RFLP MARKERS; ALT4; LOCUS;
D O I
10.2225/vol13-issue4-fulltext-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aluminum (Al) toxicity is the main factor limiting crop productivity in acidic soils around the world. In cereals, this problem reduces crop yields by 30-40%. The use of DNA-based markers linked to phenotypic traits is an interesting alternative approach. Strategies such as molecular marker-assisted selection (MAS) in conjunction with bioinformatics-based tools such as graphical genotypes (GGT) have been important for confirming introgression of genes or genomic regions in cereals but also to reduce the time and cost of identifying them through genetic selection. These biotechnologies also make it possible to identify target genes or quantitative trait loci (QTL) that can be potentially used in similar crops to increase their productivity. This review presents the main advances in the genetic improvement of cereals for Al-tolerance.
引用
收藏
页数:12
相关论文
共 102 条
[1]   Chromosomal location of aluminium tolerance genes in rye [J].
Aniol, A .
PLANT BREEDING, 2004, 123 (02) :132-136
[2]   ALUMINUM RESISTANCE IN TRITICUM-AESTIVUM ASSOCIATED WITH ENHANCED EXUDATION OF MALATE [J].
BASU, U ;
GODBOLD, D ;
TAYLOR, GJ .
JOURNAL OF PLANT PHYSIOLOGY, 1994, 144 (06) :747-753
[3]   DIFFERENTIAL EXUDATION OF POLYPEPTIDES BY ROOTS OF ALUMINUM-RESISTANT AND ALUMINUM-SENSITIVE CULTIVARS OF TRITICUM-AESTIVUM L IN RESPONSE TO ALUMINUM STRESS [J].
BASU, U ;
BASU, A ;
TAYLOR, GJ .
PLANT PHYSIOLOGY, 1994, 106 (01) :151-158
[4]   From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals [J].
Benito, C. ;
Silva-Navas, J. ;
Fontecha, G. ;
Hernandez-Riquer, M. V. ;
Eguren, M. ;
Salvador, N. ;
Gallego, F. J. .
PLANT AND SOIL, 2010, 327 (1-2) :107-120
[5]  
BENITO C, 2005, INT TRIT S PRAG CZEC, P288
[6]   THE GENOMIC INHERITANCE OF ALUMINUM TOLERANCE IN ATLAS-66 WHEAT [J].
BERZONSKY, WA .
GENOME, 1992, 35 (04) :689-693
[7]   Large-scale identification of single-feature polymorphisms in complex genomes [J].
Borevitz, JO ;
Liang, D ;
Plouffe, D ;
Chang, HS ;
Zhu, T ;
Weigel, D ;
Berry, CC ;
Winzeler, E ;
Chory, J .
GENOME RESEARCH, 2003, 13 (03) :513-523
[8]   The effect of single D-genome chromosomes on aluminum tolerance of triticale [J].
Budzianowski, G ;
Wos, H .
EUPHYTICA, 2004, 137 (02) :165-172
[9]   Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW [J].
Cai, Shibin ;
Bai, Gui-Hua ;
Zhang, Dadong .
THEORETICAL AND APPLIED GENETICS, 2008, 117 (01) :49-56
[10]  
CHAO S, 2006, AM OAT WORK C 23 25