Predicting the Rossby Number in Convective Experiments

被引:12
作者
Anders, Evan H. [1 ,2 ]
Manduca, Cathryn M. [2 ]
Brown, Benjamin P. [1 ,2 ]
Oishi, Jeffrey S. [3 ]
Vasil, Geoffrey M. [4 ]
机构
[1] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
[2] Lab Atmospher & Space Phys, Boulder, CO 80303 USA
[3] Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
convection; dynamo; hydrodynamics; Sun: rotation; turbulence; TURBULENT COMPRESSIBLE CONVECTION; DIFFERENTIAL ROTATION; SPHERICAL-SHELL; HEAT-TRANSFER; FLOWS;
D O I
10.3847/1538-4357/aaff61
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Rossby number is a crucial parameter describing the degree of rotational constraint on the convective dynamics in stars and planets. However, it is not an input to computational models of convection but must be measured ex post facto. Here, we report the discovery of a new quantity, the predictive Rossby number, which is both tightly correlated with the Rossby number and specified in terms of common inputs to numerical models. The predictive Rossby number can be specified independent of Rayleigh number, allowing suites of numerical solutions to separate the degree of rotational constraint from the strength of the driving of convection. We examine the scaling of convective transport in terms of the Nusselt number and the degree of turbulence in terms of the Reynolds number of the flow, and we find scaling laws nearly identical to those in non-rotational convection at low Rossby number when the predictive Rossby number is held constant. Finally, we describe the boundary layers as a function of increasing turbulence at constant Rossby number.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]   Convective heat transport in stratified atmospheres at low and high Mach number [J].
Anders, Evan H. ;
Brown, Benjamin P. .
PHYSICAL REVIEW FLUIDS, 2017, 2 (08)
[3]   CONVECTION AND DIFFERENTIAL ROTATION IN F-TYPE STARS [J].
Augustson, Kyle C. ;
Brown, Benjamin P. ;
Brun, Allan Sacha ;
Miesch, Mark S. ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2012, 756 (02)
[4]   The cross-over to magnetostrophic convection in planetary dynamo systems [J].
Aurnou, J. M. ;
King, E. M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199)
[5]   MAGNETIC CYCLES IN A CONVECTIVE DYNAMO SIMULATION OF A YOUNG SOLAR-TYPE STAR [J].
Brown, Benjamin P. ;
Miesch, Mark S. ;
Browning, Matthew K. ;
Brun, Allan Sacha ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2011, 731 (01)
[6]   PERSISTENT MAGNETIC WREATHS IN A RAPIDLY ROTATING SUN [J].
Brown, Benjamin P. ;
Browning, Matthew K. ;
Brun, Allan Sacha ;
Miesch, Mark S. ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2010, 711 (01) :424-438
[7]   RAPIDLY ROTATING SUNS AND ACTIVE NESTS OF CONVECTION [J].
Brown, Benjamin P. ;
Browning, Matthew K. ;
Brun, Allan Sacha ;
Miesch, Mark S. ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2008, 689 (02) :1354-1372
[8]   Turbulent compressible convection with rotation .1. Flow structure and evolution [J].
Brummell, NH ;
Hurlburt, NE ;
Toomre, J .
ASTROPHYSICAL JOURNAL, 1996, 473 (01) :494-+
[9]   Turbulent compressible convection with rotation. II. Mean flows and differential rotation [J].
Brummell, NH ;
Hurlburt, NE ;
Toomre, J .
ASTROPHYSICAL JOURNAL, 1998, 493 (02) :955-+
[10]   On Differential Rotation and Overshooting in Solar-like Stars [J].
Brun, Allan Sacha ;
Strugarek, Antoine ;
Varela, Jacobo ;
Matt, Sean P. ;
Augustson, Kyle C. ;
Emeriau, Constance ;
DoCao, Olivier Long ;
Brown, Benjamin ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2017, 836 (02)