The filtered Poincare lemma in higher level (with applications to algebraic groups)

被引:1
作者
Le Stum, Bernard [1 ]
Quiros, Adolfo [2 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
D O I
10.1017/S0027763000025915
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Poincare lemma we proved elsewhere in the context of crystalline cohomology of higher level behaves well with regard to the Hodge filtration. This allows us to prove the Poincare lemma for transversal crystals of level m. We interpret the de Rham complex in terms of what we call the Berthelot-Lieberman construction and show how the same construction call be used to study the conormal complex and invariant differential forms of higher level for a group scheme. Bringing together both instances of the construction, we show that crystalline extensions of transversal crystals by algebraic groups can be computed by reduction to the filtered de Rham complexes. Our theory does not ignore torsion and, unlike in the classical case (m = 0), not all invariant forms are closed. Therefore, close invariant differential forms of level m provide new invariants and we exhibit some examples as applications.
引用
收藏
页码:79 / 110
页数:32
相关论文
共 13 条
[1]  
Berthelot P, 1996, ANN SCI ECOLE NORM S, V29, P185
[2]  
BERTHELOT P, 1982, LECT NOTES MATH, V930, pR3
[3]  
Berthelot P., 1978, NOTES CRYSTALLINE CO
[4]  
Berthelot P., 1974, Lecture Notes in Mathematics, V407
[5]  
CREW R, 2004, GEOMETRIC ASPECTS DW, V1, P451, DOI DOI 10.1515/9783110198133.1.451
[6]  
DELIGNE P, 1971, HAUTES ETUDES SCI PU, P5
[7]  
Etesse JY, 1997, INVENT MATH, V127, P1
[8]  
Illusie L., 1971, Lecture Notes in Math., V239
[9]   The exact Poincare Lemma in crystalline cohomology of higher level [J].
Le Stum, B ;
Quirós, A .
JOURNAL OF ALGEBRA, 2001, 240 (02) :559-588
[10]  
LeStum B, 1997, ANN I FOURIER, V47, P69