Microbubbles, oscillating flow, and mass transfer coefficients in air-water bubble columns

被引:12
作者
Levitsky, Inna [1 ,2 ]
Tavor, Dorith [2 ]
Gitis, Vitaly [1 ]
机构
[1] Ben Gurion Univ Negev, Fac Engn Sci, POB 653, IL-8410501 Beer Sheva, Israel
[2] Sami Shamoon Coll Engn, Dept Chem Engn, 56 Bialik St, IL-8410802 Beer Sheva, Israel
关键词
Air sparging; Rising velocity; Mass transfer coefficient; Oscillating flow; Microbubble; LIQUID INTERFACIAL AREA; THEORETICAL PREDICTION; AQUEOUS-SOLUTIONS; 2-PHASE FLOW; CO2; CAPTURE; GAS HOLDUP; PRESSURE; HYDRODYNAMICS; SIZE; AERATION;
D O I
10.1016/j.jwpe.2022.103087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mass transfer coefficient k(L)a determines the flux of dissolved oxygen DO in bubble columns. The k(L)a values can be determined experimentally or predicted using a correlation. Common correlations link k(L)a with superficial air velocity, air hold-up volume, bubble contact time, bubble rising velocity, or bubble Sauter diameter. We compared experimentally found and predicted k(L)a values to evidence that none of the above correlations is applicable for microbubbles flow. The only way to accurately predict the flow is by using mass transport models needed to calculate k(L). The transition from k(L) to k(L)a requires a redefinition of the specific interfacial area a for microbubbles. Microbubbles distribute DO quicker than macrobubbles. Oscillating flow can raise the DO level to saturation. The generation of oscillating flow does not require extra energy turning the subsurface aeration more energy -efficient than the surface aeration.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity
    Wang, Binbin
    Liao, Qian
    Fillingham, Joseph H.
    Bootsma, Harvey A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (03) : 2129 - 2146
  • [22] The gas density effect on mass transfer in bubble columns with organic liquids
    Jordan, U
    Schumpe, A
    [J]. CHEMICAL ENGINEERING SCIENCE, 2001, 56 (21-22) : 6267 - 6272
  • [23] Gas Holdup, Axial Dispersion, and Mass Transfer Studies in Bubble Columns
    Shah, Mayank
    Kiss, Anton A.
    Zondervan, Edwin
    van der Schaaf, John
    de Haan, Andre B.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (43) : 14268 - 14278
  • [24] Aeration and air-water mass transfer on stepped chutes with embankment dam slopes
    Felder, Stefan
    Chanson, Hubert
    [J]. ENVIRONMENTAL FLUID MECHANICS, 2015, 15 (04) : 695 - 710
  • [25] Correlations of Bubble Diameter and Frequency for Air-Water System Based on Orifice Diameter and Flow Rate
    Al Ba'ba'a, Hasan B.
    Elgammal, Tarek
    Amano, Ryoichi S.
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (11):
  • [26] Liquid flow patterns in rectangular air-water bubble column investigated with Radioactive Particle Tracking
    Upadhyay, Rajesh K.
    Pant, Harish J.
    Roy, Shantanu
    [J]. CHEMICAL ENGINEERING SCIENCE, 2013, 96 : 152 - 164
  • [27] The parameters measurement of air-water two phase flow using the electrical resistance tomography (ERT) technique in a bubble column
    Jin, Haibo
    Lian, Yicheng
    Yang, Suohe
    He, Guangxiang
    Guo, Zhiwu
    [J]. FLOW MEASUREMENT AND INSTRUMENTATION, 2013, 31 : 55 - 60
  • [28] Mass transfer from oscillating bubbles in bubble column reactors
    Martin, Mariano
    Montes, Francisco J.
    Galan, Miguel A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2009, 151 (1-3) : 79 - 88
  • [29] Diagnosis of bubble distribution and mass transfer in bubble columns with viscous liquid medium
    Kang, Y
    Cho, YJ
    Woo, KJ
    Kim, SD
    [J]. CHEMICAL ENGINEERING SCIENCE, 1999, 54 (21) : 4887 - 4893
  • [30] PREDICTION OF MASS TRANSFER COEFFICIENTS IN REGULAR PACKED COLUMNS
    Kelishami, Ahmad Rahbar
    Bahmanyar, Hossein
    Mousavian, Mohamad Ali
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 2011, 198 (08) : 1041 - 1062