GLOBAL EXISTENCE FOR SEMILINEAR DAMPED WAVE EQUATIONS IN THE SCATTERING CASE

被引:0
作者
Bai, Yige [1 ]
Liu, Mengyun [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
TIME-DEPENDENT DISSIPATION; BLOW-UP; GLASSEY CONJECTURE; BEHAVIOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global existence of solutions to semilinear damped wave equations in the scattering case with power-type non linearity on the derivatives, posed on nontrapping asymptotically Euclidean manifolds. The main idea is to shift initial time by local existence. As a result, we could convert the damping term to small enough perturbation and obtain the global existence.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 18 条
[1]  
An Lai N., DIFFERENTIAL INTEGRA
[2]  
Glassey R. T., 1983, COMM PARTIAL DIFFERE
[3]  
Hidano K, 1995, INDIANA U MATH J, V44, P1273
[4]   Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations [J].
Hidano, Kunio ;
Wang, Chengbo ;
Yokoyama, Kazuyoshi .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :667-694
[5]   The Glassey conjecture with radially symmetric data [J].
Hidano, Kunio ;
Wang, Chengbo ;
Yokoyama, Kazuyoshi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 98 (05) :518-541
[6]   Global parametrices and dispersive estimates for variable coefficient wave equations [J].
Metcalfe, Jason ;
Tataru, Daniel .
MATHEMATISCHE ANNALEN, 2012, 353 (04) :1183-1237
[10]   Global Strichartz estimates for nontrapping perturbations of the Laplacian. [J].
Smith, HF ;
Sogge, CD .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (11-12) :2171-2183