Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial)

被引:114
作者
Brown, Jeremy R. Glissen [1 ,2 ]
Mansour, Nabil M. [3 ]
Wang, Pu [4 ,5 ]
Chuchuca, Maria Aguilera [1 ,2 ]
Minchenberg, Scott B. [2 ,6 ]
Chandnani, Madhuri [1 ,2 ]
Liu, Lin [7 ]
Gross, Seth A. [8 ]
Sengupta, Neil [9 ]
Berzin, Tyler M. [1 ,2 ]
机构
[1] Beth Israel Deaconess Med Ctr, Ctr Adv Endoscopy, Div Gastroenterol, Boston, MA 02130 USA
[2] Harvard Med Sch, 330 Brookline Ave, Boston, MA 02130 USA
[3] Baylor Coll Med, Sect Gastroenterol & Hepatol, Houston, TX 77030 USA
[4] Sichuan Acad Med Sci, Dept Gastroenterol, Chengdu, Peoples R China
[5] Sichuan Prov Peoples Hosp, Chengdu, Peoples R China
[6] Beth Israel Deaconess Med Ctr, Dept Internal Med, Boston, MA 02130 USA
[7] Shanghai Jiao Tong Univ, Sch Math Sci & SJTU Yale Joint Ctr Biostat & Data, Inst Nat Sci, MOE LSC, Shanghai, Peoples R China
[8] NYU Langone Hlth Syst, Div Gastroenterol & Hepatol, New York, NY USA
[9] Univ Chicago Med, Sect Gastroenterol, Chicago, IL USA
基金
国家自然科学基金重大项目;
关键词
Adenoma Detection Rate; Adenoma Miss Rate; Computer-aided Detection; Deep Learning; Randomized Tandem Colonoscopy Study;
D O I
10.1016/j.cgh.2021.09.009
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
BACKGROUND & AIMS: Artificial intelligence-based computer-aided polyp detection (CADe) systems are intended to address the issue of missed polyps during colonoscopy. The effect of CADe during screening and surveillance colonoscopy has not previously been studied in a United States (U.S.) population. METHODS: We conducted a prospective, multi-center, single-blind randomized tandem colonoscopy study to evaluate a deep-learning based CADe system (EndoScreener, Shanghai Wision AI, China). Patients were enrolled across 4 U.S. academic medical centers from 2019 through 2020. Patients presenting for colorectal cancer screening or surveillance were randomized to CADe colonoscopy first or high-definition white light (HDWL) colonoscopy first, followed immediately by the other procedure in tandem fashion by the same endoscopist. The primary outcome was adenoma miss rate (AMR), and secondary outcomes included sessile serrated lesion (SSL) miss rate and adenomas per colonoscopy (APC). RESULTS: A total of 232 patients entered the study, with 116 patients randomized to undergo CADe colonoscopy first and 116 patients randomized to undergo HDWL colonoscopy first. After the exclusion of 9 patients, the study cohort included 223 patients. AMR was lower in the CADe-first group compared with the HDWL-first group (20.12% [34/169] vs 31.25% [45/144]; odds ratio [OR], 1.8048; 95% confidence interval [CI], 1.0780-3.0217; P=.0247). SSL miss rate was lower in the CADe-first group (7.14% [1/14]) vs the HDWL-first group (42.11% [8/19]; P=.0482). First-pass APC was higher in the CADe-first group (1.19 [standard deviation (SD), 2.03] vs 0.90 [SD, 1.55]; P=.0323). First-pass ADR was 50.44% in the CADe-first group and 43.64 % in the HDWL-first group (P=.3091). CONCLUSION: In this U.S. multicenter tandem colonoscopy randomized controlled trial, we demonstrate a decrease in AMR and SSL miss rate and an increase in first-pass APC with the use of a CADe-system when compared with HDWL colonoscopy alone.
引用
收藏
页码:1499 / +
页数:13
相关论文
共 26 条
[1]   The Miss Rate for Colorectal Adenoma Determined by Quality-Adjusted, Back-to-Back Colonoscopies [J].
Ahn, Sang Bong ;
Han, Dong Soo ;
Bae, Joong Ho ;
Byun, Tae Jun ;
Kim, Jong Pyo ;
Eun, Chang Soo .
GUT AND LIVER, 2012, 6 (01) :64-70
[2]   Association Between Visual Gaze Patterns and Adenoma Detection Rate During Colonoscopy: A Preliminary Investigation [J].
Almansa, Cristina ;
Shahid, Muhammad W. ;
Heckman, Michael G. ;
Preissler, Susan ;
Wallace, Michael B. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2011, 106 (06) :1070-1074
[3]   Association of small versus diminutive adenomas and the risk for metachronous advanced adenomas: data from the New Hampshire Colonoscopy Registry [J].
Anderson, Joseph C. ;
Rex, Douglas K. ;
Robinson, Christina ;
Butterly, Lynn F. .
GASTROINTESTINAL ENDOSCOPY, 2019, 90 (03) :495-501
[4]  
[Anonymous], 2003, GASTROINTEST ENDOSC, V58, pS3
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]   SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials [J].
Chan, An-Wen ;
Tetzlaff, Jennifer M. ;
Altman, Douglas G. ;
Laupacis, Andreas ;
Gotzsche, Peter C. ;
Krleza-Jeric, Karmela ;
Hrobjartsson, Asbjorn ;
Mann, Howard ;
Dickersin, Kay ;
Berlin, Jesse A. ;
Dore, Caroline J. ;
Parulekar, Wendy R. ;
Summerskill, William S. M. ;
Groves, Trish ;
Schulz, Kenneth F. ;
Sox, Harold C. ;
Rockhold, Frank W. ;
Rennie, Drummond ;
Moher, David .
ANNALS OF INTERNAL MEDICINE, 2013, 158 (03) :200-+
[7]   Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis [J].
Chen, Peng-Jen ;
Lin, Meng-Chiung ;
Lai, Mei-Ju ;
Lin, Jung-Chun ;
Lu, Henry Horng-Shing ;
Tseng, Vincent S. .
GASTROENTEROLOGY, 2018, 154 (03) :568-575
[8]  
Corley DA, 2014, NEW ENGL J MED, V370, P1298, DOI [10.1056/NEJMoa1309086, 10.1056/NEJMc1405329]
[9]   Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis [J].
Hassan, Cesare ;
Spadaccini, Marco ;
Iannone, Andrea ;
Maselli, Roberta ;
Jovani, Manol ;
Chandrasekar, Viveksandeep Thoguluva ;
Antonelli, Giulio ;
Yu, Honggang ;
Areia, Miguel ;
Dinis-Ribeiro, Mario ;
Bhandari, Pradeep ;
Sharma, Prateek ;
Rex, Douglas K. ;
Roesch, Thomas ;
Wallace, Michael ;
Repici, Alessandro .
GASTROINTESTINAL ENDOSCOPY, 2021, 93 (01) :77-+
[10]   Benchmarking definitions of false-positive alerts during computer-aided polyp detection in colonoscopy [J].
Holzwanger, Erik A. ;
Bilal, Mohammad ;
Glissen Brown, Jeremy R. ;
Singh, Shailendra ;
Becq, Aymeric ;
Ernest-Suarez, Kenneth ;
Berzin, Tyler M. .
ENDOSCOPY, 2021, 53 (09) :937-940