共 50 条
Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels
被引:78
作者:
Shuart, Noah G.
[1
,2
]
Haitin, Yoni
[1
,2
]
Camp, Stacey S.
[1
,2
]
Black, Kevin D.
[1
,2
]
Zagotta, William N.
[1
,2
]
机构:
[1] Univ Washington, Sch Med, Howard Hughes Med Inst, Seattle, WA 98195 USA
[2] Univ Washington, Sch Med, Dept Physiol & Biophys, Seattle, WA 98195 USA
关键词:
SIZE-EXCLUSION CHROMATOGRAPHY;
FUNCTIONAL EXPRESSION;
FLUORESCENT PROTEINS;
PHOTORECEPTOR CELLS;
CRYSTAL-STRUCTURE;
CATION CHANNEL;
COILED COILS;
MODULATION;
BETA;
INHIBITION;
D O I:
10.1038/ncomms1466
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3: 1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels.
引用
收藏
页数:10
相关论文
共 50 条