A new shortening method and Hermitian self-dual codes over F2 + vF2

被引:1
作者
Aksoy, Refia [1 ]
Caliskan, Fatma [2 ]
机构
[1] Istanbul Univ, Inst Grad Studies Sci, Istanbul, Turkey
[2] Istanbul Univ, Dept Math, TR-34134 Istanbul, Turkey
关键词
Hermitian self-dual code; Code over ring; Chinese remainder theorem; Circulant matrix; Isodual code; CYCLIC CODES;
D O I
10.1016/j.disc.2019.111716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate free Hermitian self-dual codes whose generator matrices are of the form [I, A + vB] over the ring F-2 + vF(2) = {0, 1, v, 1 + v} with v(2) = v. We use the double-circulant, the bordered double-circulant and the symmetric construction methods to obtain free Hermitian self-dual codes of even length. By describing a new shortening method over this ring, we are able to obtain Hermitian self-dual codes of odd length. Using these methods, we also obtain a number of extremal codes. We tabulate the Hermitian self-dual codes with the highest minimum weights of lengths up to 50. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 15 条
[1]  
Abualrub T, 2012, AUSTRALAS J COMB, V54, P115
[2]  
AL-Ashker M., 2008, AN NAJAH U J SC, V22, P25
[3]  
[Anonymous], 1993, Finite Fields: Structure and Arithmetics
[4]   Applications of coding theory to the construction of modular lattices [J].
Bachoc, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) :92-119
[5]  
Batoul A, 2015, EUR J PURE APPL MATH, V8, P64
[6]   Optimal self-dual codes over F2 x F2 with respect to the hamming weight [J].
Betsumiya, K ;
Harada, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (02) :356-358
[7]  
Betsumiya K, 2003, DESIGN CODE CRYPTOGR, V28, P171, DOI 10.1023/A:1022540524423
[8]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[9]   Codes over an infinite family of rings with a Gray map [J].
Cengellenmis, Yasemin ;
Dertli, Abdullah ;
Dougherty, S. T. .
DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) :559-580
[10]  
Dertli A., 2011, Int. J. Algebra, V5, P985