Performance of a vanadium redox flow battery with a VANADion membrane

被引:71
|
作者
Zhou, X. L. [1 ]
Zhao, T. S. [1 ]
An, L. [1 ]
Zeng, Y. K. [1 ]
Zhu, X. B. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Energy storage; Flow battery; Performance evaluation; VANADion; PEROXIDE FUEL-CELL; ALL-VANADIUM; MICROPOROUS SEPARATOR; ENERGY-STORAGE; GRAPHITE FELT; COMPOSITE; ELECTRODE; PROGRESS; MODEL; STACK;
D O I
10.1016/j.apenergy.2016.08.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Conventional vanadium redox flow batteries (VRFBs) using Nafion 115 suffered from issues associated with high ohmic resistance and high capital cost. In this work, we report a commercial membrane (VANADion), consisting of a porous layer and a dense Nafion layer, as a promising alternative to Nafion 115. In the dual-layer structure, the porous layer (similar to 210 mu m) can offer a high ionic conductivity and the dense Nafion layer (similar to 20 mu m) can depress the convective flow of electrolyte through the membrane. By comparing with the conventional Nafion 115 in a VRFB, it is found that the change from the conventional Nafion 115 to the composite one results in an increase in the energy efficiency from 71.3% to 76.2% and an increase in the electrolyte utilization from 54.1% to 68.4% at a current density of as high as 240 mA cm(-2). In addition, although two batteries show the comparable cycling performance at current densities ranging from 80 mA cm(-2) to 240 mA cm(-2), the composite membrane is estimated to be significantly cheaper than the conventional Nafion 115 due to the fact that the porous layer is rather cost-effective and the dense Nafion layer is rather thin. The impressive combination of desirable performance and low cost makes this composite membrane highly promising in the VRFB applications. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [1] Nanofiltration membrane improves performance of vanadium redox flow battery
    McCormick, Colin
    MRS BULLETIN, 2011, 36 (06) : 410 - 411
  • [2] Effect of nafion membrane thickness on performance of vanadium redox flow battery
    Sanghyun Jeong
    Lae-Hyun Kim
    Yongchai Kwon
    Sunhoe Kim
    Korean Journal of Chemical Engineering, 2014, 31 : 2081 - 2087
  • [3] Effect of nafion membrane thickness on performance of vanadium redox flow battery
    Jeong, Sanghyun
    Kim, Lae-Hyun
    Kwon, Yongchai
    Kim, Sunhoe
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (11) : 2081 - 2087
  • [4] Nano FocusNanofiltration membrane improves performance of vanadium redox flow battery
    Colin McCormick
    MRS Bulletin, 2011, 36 : 410 - 411
  • [5] A multilayered membrane for vanadium redox flow battery
    Jia, Chuankun
    Liu, Jianguo
    Yan, Chuanwei
    JOURNAL OF POWER SOURCES, 2012, 203 : 190 - 194
  • [6] Modified Nafion Membrane in Vanadium Redox Flow Battery
    Yang, Haoling
    Xu, Kunyu
    Zhang, Qi
    Tao, Liang
    Yang, Zihao
    Dong, Zhaoxia
    PROGRESS IN CHEMISTRY, 2023, 35 (11) : 1595 - 1612
  • [7] A significantly improved membrane for vanadium redox flow battery
    Jia, Chuankun
    Liu, Jianguo
    Yan, Chuanwei
    JOURNAL OF POWER SOURCES, 2010, 195 (13) : 4380 - 4383
  • [8] Performance of a vanadium redox flow battery with and without flow fields
    Xu, Q.
    Zhao, T. S.
    Zhang, C.
    ELECTROCHIMICA ACTA, 2014, 142 : 61 - 67
  • [9] Ion selective redox active anion exchange membrane: Improved performance of vanadium redox flow battery
    Sharma, Prerana
    Kumar, Sonu
    Bhushan, Mani
    Shahi, Vinod K.
    JOURNAL OF MEMBRANE SCIENCE, 2021, 637
  • [10] Proton conducting zeolite composite membrane boosts the performance of vanadium redox flow battery
    Pawar, Chetan M.
    Sreenath, Sooraj
    Bhatt, Bhavana
    Dave, Vidhiben
    P.s, Nayanthara
    Saleha, Wasim F. G.
    Sethia, Govind
    Nagarale, Rajaram K.
    SOLID STATE IONICS, 2024, 404