Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer

被引:158
作者
Jiang, Guanglong [1 ,2 ]
Zhang, Shijun [1 ,2 ]
Yazdanparast, Aida [1 ,2 ]
Li, Meng [1 ,2 ]
Pawar, Aniruddha Vikram [1 ,2 ]
Liu, Yunlong [1 ,2 ]
Inavolu, Sai Mounika [1 ,2 ]
Cheng, Lijun [1 ,2 ]
机构
[1] Indiana Univ, Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
关键词
Heterogeneous; Breast cancer; DNA mutation; mRNA expression; Copy number alteration; Reverse-phase protein array; Molecular portraits; Cell lines; GENOME-WIDE ASSOCIATION; MUTATIONAL EVOLUTION; PROTEIN ABUNDANCE; GENE-EXPRESSION; MODELS; SUBTYPES; SIGNATURES; LANDSCAPE; DISCOVERY; RESOURCE;
D O I
10.1186/s12864-016-2911-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Proper cell models for breast cancer primary tumors have long been the focal point in the cancer's research. The genomic comparison between cell lines and tumors can investigate the similarity and dissimilarity and help to select right cell model to mimic tumor tissues to properly evaluate the drug reaction in vitro. In this paper, a comprehensive comparison in copy number variation (CNV), mutation, mRNA expression and protein expression between 68 breast cancer cell lines and 1375 primary breast tumors is conducted and presented. Results: Using whole genome expression arrays, strong correlations were observed between cells and tumors. PAM50 gene expression differentiated them into four major breast cancer subtypes: Luminal A and B, HER2amp, and Basal-like in both cells and tumors partially. Genomic CNVs patterns were observed between tumors and cells across chromosomes in general. High C > T and C > G trans-version rates were observed in both cells and tumors, while the cells had slightly higher somatic mutation rates than tumors. Clustering analysis on protein expression data can reasonably recover the breast cancer subtypes in cell lines and tumors. Although the drug-targeted proteins ER/PR and interesting mTOR/GSK3/TS2/PDK1/ER_P118 cluster had shown the consistent patterns between cells and tumor, low protein-based correlations were observed between cells and tumors. The expression consistency of mRNA verse protein between cell line and tumors reaches 0.7076. These important drug targets in breast cancer, ESR1, PGR, HER2, EGFR and AR have a high similarity in mRNA and protein variation in both tumors and cell lines. GATA3 and RP56KB1 are two promising drug targets for breast cancer. A total score developed from the four correlations among four molecular profiles suggests that cell lines, BT483, T47D and MDAMB453 have the highest similarity with tumors. Conclusions: The integrated data from across these multiple platforms demonstrates the existence of the similarity and dissimilarity of molecular features between breast cancer tumors and cell lines. The cell lines only mirror some but not all of the molecular properties of primary tumors. The study results add more evidence in selecting cell line models for breast cancer research.
引用
收藏
页数:21
相关论文
共 44 条
[1]  
[Anonymous], 2011, R LANG ENV STAT COMP
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]   International Variation in Prostate Cancer Incidence and Mortality Rates [J].
Center, Melissa M. ;
Jemal, Ahmedin ;
Lortet-Tieulent, Joannie ;
Ward, Elizabeth ;
Ferlay, Jacques ;
Brawley, Otis ;
Bray, Freddie .
EUROPEAN UROLOGY, 2012, 61 (06) :1079-1092
[4]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[5]   Modeling precision treatment of breast cancer [J].
Daemen, Anneleen ;
Griffith, Obi L. ;
Heiser, Laura M. ;
Wang, Nicholas J. ;
Enache, Oana M. ;
Sanborn, Zachary ;
Pepin, Francois ;
Durinck, Steffen ;
Korkola, James E. ;
Griffith, Malachi ;
Hur, Joe S. ;
Huh, Nam ;
Chung, Jongsuk ;
Cope, Leslie ;
Fackler, Mary Jo ;
Umbricht, Christopher ;
Sukumar, Saraswati ;
Seth, Pankaj ;
Sukhatme, Vikas P. ;
Jakkula, Lakshmi R. ;
Lu, Yiling ;
Mills, Gordon B. ;
Cho, Raymond J. ;
Collisson, Eric A. ;
van't Veer, Laura J. ;
Spellman, Paul T. ;
Gray, Joe W. .
GENOME BIOLOGY, 2013, 14 (10)
[6]   Evaluating cell lines as tumour models by comparison of genomic profiles [J].
Domcke, Silvia ;
Sinha, Rileen ;
Levine, Douglas A. ;
Sander, Chris ;
Schultz, Nikolaus .
NATURE COMMUNICATIONS, 2013, 4
[7]   Genome-wide association study identifies novel breast cancer susceptibility loci [J].
Easton, Douglas F. ;
Pooley, Karen A. ;
Dunning, Alison M. ;
Pharoah, Paul D. P. ;
Thompson, Deborah ;
Ballinger, Dennis G. ;
Struewing, Jeffery P. ;
Morrison, Jonathan ;
Field, Helen ;
Luben, Robert ;
Wareham, Nicholas ;
Ahmed, Shahana ;
Healey, Catherine S. ;
Bowman, Richard ;
Meyer, Kerstin B. ;
Haiman, Christopher A. ;
Kolonel, Laurence K. ;
Henderson, Brian E. ;
Le Marchand, Loic ;
Brennan, Paul ;
Sangrajrang, Suleeporn ;
Gaborieau, Valerie ;
Odefrey, Fabrice ;
Shen, Chen-Yang ;
Wu, Pei-Ei ;
Wang, Hui-Chun ;
Eccles, Diana ;
Evans, D. Gareth ;
Peto, Julian ;
Fletcher, Olivia ;
Johnson, Nichola ;
Seal, Sheila ;
Stratton, Michael R. ;
Rahman, Nazneen ;
Chenevix-Trench, Georgia ;
Bojesen, Stig E. ;
Nordestgaard, Borge G. ;
Axelsson, Christen K. ;
Garcia-Closas, Montserrat ;
Brinton, Louise ;
Chanock, Stephen ;
Lissowska, Jolanta ;
Peplonska, Beata ;
Nevanlinna, Heli ;
Fagerholm, Rainer ;
Eerola, Hannaleena ;
Kang, Daehee ;
Yoo, Keun-Young ;
Noh, Dong-Young ;
Ahn, Sei-Hyun .
NATURE, 2007, 447 (7148) :1087-U7
[8]   Breast cancer genome-wide association studies: there is strength in numbers [J].
Fanale, D. ;
Amodeo, V. ;
Corsini, L. R. ;
Rizzo, S. ;
Bazan, V. ;
Russo, A. .
ONCOGENE, 2012, 31 (17) :2121-2128
[9]   COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer [J].
Forbes, Simon A. ;
Tang, Gurpreet ;
Bindal, Nidhi ;
Bamford, Sally ;
Dawson, Elisabeth ;
Cole, Charlotte ;
Kok, Chai Yin ;
Jia, Mingming ;
Ewing, Rebecca ;
Menzies, Andrew ;
Teague, Jon W. ;
Stratton, Michael R. ;
Futreal, P. Andrew .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D652-D657
[10]  
Gazdar AF, 1998, INT J CANCER, V78, P766, DOI 10.1002/(SICI)1097-0215(19981209)78:6<766::AID-IJC15>3.0.CO