The theory of regularized traces of operators as applied to approximate computation of eigenvalues and eigenfunctions of fluid dynamics problems

被引:0
作者
Kerimov, M. K. [1 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
approximate methods for problems concerning hydrodynamic stability of viscous flows; Orr-Sommerfeld differential operator; computation of eigenvalues and eigenfunctions; methods of regularized traces of operators; HYDRODYNAMIC STABILITY; 1ST EIGENVALUES; FLOW;
D O I
10.1134/S0965542512050120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some results concerning the computation of eigenvalues and eigenfunctions of fluid dynamics problems by applying methods of regularized traces of differential operators are presented. The presentation is focused primarily on the non-self-adjoint fourth-order Orr-Sommerfeld operator, which arises in the hydrodynamic stability theory of viscous flows.
引用
收藏
页码:756 / 786
页数:31
相关论文
共 26 条
[1]  
Dikii L., 1958, USP MATEM NAUK, V13, P111
[2]  
Dorodnicyn AA., 1952, USP MAT NAUK, V7, P3
[3]  
Dorodnitsyn A. A., 1997, SELECTED SCI WORKS, V1
[4]  
Dorodnitsyn A. A., 1997, SELECTED SCI WORKS
[5]  
Dubrovskii V. V., 1998, ELEKTROMAG VOLNY ELE, V3, P4
[6]  
Dubrovskii VV, 2001, DOKL MATH, V64, P425
[7]  
Dubrovskii VV, 2001, DOKL MATH, V64, P165
[8]  
Dubrovskii VV, 2001, DOKL MATH, V63, P355
[9]  
Guseinov M. A., 1998, MAT MODEL, V8, P25
[10]   Computing the sums of Rayleigh-Schrödinger series of perturbed self-adjoint operators [J].
Kadchenko S.I. .
Computational Mathematics and Mathematical Physics, 2007, 47 (9) :1435-1445