Structural and Dynamic Determinants of Protein-Peptide Recognition

被引:78
作者
Dagliyan, Onur [1 ,2 ]
Proctor, Elizabeth A. [2 ,3 ]
D'Auria, Kevin M. [5 ]
Ding, Feng [1 ,4 ]
Dokholyan, Nikolay V. [1 ,2 ,3 ,4 ]
机构
[1] Univ N Carolina, Sch Med, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Program Mol & Cellular Biophys, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Curriculum Bioinformat & Computat Biol, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Ctr Syst & Computat Biol, Chapel Hill, NC 27599 USA
[5] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA
基金
美国国家卫生研究院;
关键词
TRANSIENT ENCOUNTER COMPLEXES; DISCRETE MOLECULAR-DYNAMICS; ELECTROSTATIC INTERACTIONS; BINDING-SITE; FREE-ENERGY; MULTIPLE; LIGANDS; DOCKING; RESIDUES; RECEPTOR;
D O I
10.1016/j.str.2011.09.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-peptide interactions play important roles in many cellular processes, including signal transduction, trafficking, and immune recognition. Protein conformational changes upon binding, an ill-defined peptide binding surface, and the large number of peptide degrees of freedom make the prediction of protein-peptide interactions particularly challenging. To address these challenges, we perform rapid molecular dynamics simulations in order to examine the energetic and dynamic aspects of protein-peptide binding. We find that, in most cases, we recapitulate the native binding sites and native-like poses of protein-peptide complexes. Inclusion of electrostatic interactions in simulations significantly improves the prediction accuracy. Our results also highlight the importance of protein conformational flexibility, especially side-chain movement, which allows the peptide to optimize its conformation. Our findings not only demonstrate the importance of sufficient sampling of the protein and peptide conformations, but also reveal the possible effects of electrostatics and conformational flexibility on peptide recognition.
引用
收藏
页码:1837 / 1845
页数:9
相关论文
共 47 条
[1]   Toward the fast blind docking of a peptide to a target protein by using a four-body statistical pseudo-potential [J].
Aita, Takuyo ;
Nishigaki, Koichi ;
Husimi, Yuzuru .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2010, 34 (01) :53-62
[2]   Approaches to solving the rigid receptor problem by identifying a minimal set of flexible residues during ligand docking [J].
Anderson, AC ;
O'Neil, RH ;
Surti, TS ;
Stroud, RM .
CHEMISTRY & BIOLOGY, 2001, 8 (05) :445-457
[3]   The role of electrostatic interactions in calmodulin-peptide complex formation [J].
André, I ;
Kesvatera, T ;
Jönsson, B ;
Åkerfeldt, KS ;
Linse, S .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :1929-1938
[4]   DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility [J].
Antes, Iris .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (05) :1084-1104
[5]   DIHYDROFOLATE-REDUCTASE - MULTIPLE CONFORMATIONS AND ALTERNATIVE MODES OF SUBSTRATE BINDING [J].
BIRDSALL, B ;
FEENEY, J ;
TENDLER, SJB ;
HAMMOND, SJ ;
ROBERTS, GCK .
BIOCHEMISTRY, 1989, 28 (05) :2297-2305
[6]   Fast prediction and visualization of protein binding pockets with PASS [J].
Brady, GP ;
Stouten, PFW .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2000, 14 (04) :383-401
[7]   Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure [J].
Capra, John A. ;
Laskowski, Roman A. ;
Thornton, Janet M. ;
Singh, Mona ;
Funkhouser, Thomas A. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)
[8]  
Carlson HA, 2000, MOL PHARMACOL, V57, P213
[9]   Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair [J].
Chapados, BR ;
Hosfield, DJ ;
Han, S ;
Qiu, JZ ;
Yelent, B ;
Shen, BH ;
Tainer, JA .
CELL, 2004, 116 (01) :39-50
[10]   Protein Pockets: Inventory, Shape, and Comparison [J].
Coleman, Ryan G. ;
Sharp, Kim A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (04) :589-603