COTTONOMICS: a comprehensive cotton multi-omics database

被引:14
|
作者
Dai, Fan [1 ]
Chen, Jiedan [1 ,2 ]
Zhang, Ziqian [1 ]
Liu, Fengjun [1 ]
Li, Jun [1 ]
Zhao, Ting [1 ]
Hu, Yan [1 ]
Zhang, Tianzhen [1 ]
Fang, Lei [1 ]
机构
[1] Zhejiang Univ, Plant Precis Breeding Acad, Coll Agr & Biotechnol, Inst Crop Sci,Zhejiang Prov Key Lab Crop Genet Re, Hangzhou 310058, Zhejiang, Peoples R China
[2] Chinese Acad Agr Sci, Tea Res Inst, Hangzhou 310008, Peoples R China
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2022年 / 2022卷
基金
美国国家科学基金会;
关键词
GENOME; POLYPLOIDIZATION; RECONSTRUCTION; CLASSIFICATION; SELECTION; ALIGNMENT; EVOLUTION; GENES;
D O I
10.1093/database/baac080
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid advancement of sequencing technology, including next-generation sequencing (NGS), has greatly improved sequencing efficiency and decreased cost. Consequently, huge amounts of genomic, transcriptomic and epigenetic data concerning cotton species have been generated and released.These large-scale data provide immense opportunities for the study of cotton genomic structure and evolution, population genetic diversity and genome-wide mining of excellent genes for important traits. However, the complexity of NGS data also causes distress, as it cannot be utilized easily. Here, we presented the cotton omics data platform COTTONOMICS (http://cotton.zju.edu.cn/), an easily accessible web database that integrates 32.5TB of omics data including seven assembled genomes, resequencing data from 1180 allotetraploid cotton accessions and RNA-sequencing (RNA-seq), small RNA-sequencing (smRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), DNase hypersensitive sites sequencing (DNase-seq) and Bisulfite sequencing (BS-seq). COTTONOMICS allows users to employ various search scenarios and retrieve information concerning the cotton genomes, genomic variation (Single nucleotide polymorphisms (SNPs) and Insertion and Deletion (InDels)), gene expression, smRNA expression, epigenetic regulation and quantitative trait locus (QTLs).The user-friendly web interface offers a variety of modules for storing, retrieving, analyzing and visualizing cotton multi-omics data to diverse ends, thereby enabling users to decipher cotton population genetics and identify potential novel genes that influence agronomically beneficial traits.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review
    Haidar, Siwar
    Hooker, Julia
    Lackey, Simon
    Elian, Mohamad
    Puchacz, Nathalie
    Szczyglowski, Krzysztof
    Marsolais, Frederic
    Golshani, Ashkan
    Cober, Elroy R.
    Samanfar, Bahram
    PLANTS-BASEL, 2024, 13 (19):
  • [42] A multi-omics approach to solving problems in plant disease ecology
    Crandall, Sharifa G.
    Gold, Kaitlin M.
    Jimenez-Gasco, Maria del Mar
    Filgueiras, Camila C.
    Willett, Denis S.
    PLOS ONE, 2020, 15 (09):
  • [43] Integrated Multi-Omics Maps of Lower-Grade Gliomas
    Binder, Hans
    Schmidt, Maria
    Hopp, Lydia
    Davitavyan, Suren
    Arakelyan, Arsen
    Loeffler-Wirth, Henry
    CANCERS, 2022, 14 (11)
  • [44] Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation
    Wang, Maojun
    Wang, Pengcheng
    Tu, Lili
    Zhu, Sitao
    Zhang, Lin
    Li, Zhonghua
    Zhang, Qinghua
    Yuan, Daojun
    Zhang, Xianlong
    NUCLEIC ACIDS RESEARCH, 2016, 44 (09) : 4067 - +
  • [45] Integrated Multi-Omics Landscape of Liver Metastases
    Yang, Shuai
    Qian, Ling
    Li, Zhixuan
    Li, Ye
    Bai, Jian
    Zheng, Bo
    Chen, Kun
    Qiu, Xinyao
    Cai, Guoxiang
    Wang, Shan
    Huang, Haiyan
    Wu, Jianmin
    Zhu, Yanjing
    Zhangyang, Qianwen
    Feng, Lanyun
    Wu, Tong
    Wu, Rui
    Yang, Airong
    Wang, Kaiting
    Wang, Ruiru
    Zhang, Yani
    Zhao, Yan
    Wang, Wenwen
    Bao, Jinxia
    Shen, Siyun
    Hu, Ji
    Wu, Xuan
    Zhou, Tao
    Meng, Zhiqiang
    Liu, Weiwei
    Wang, Hongyang
    Wang, Peng
    Chen, Lei
    GASTROENTEROLOGY, 2023, 164 (03) : 407 - 423.e17
  • [46] Integrative clustering methods for multi-omics data
    Zhang, Xiaoyu
    Zhou, Zhenwei
    Xu, Hanfei
    Liu, Ching-Ti
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (03)
  • [47] Applications of multi-omics analysis in human diseases
    Chen, Chongyang
    Wang, Jing
    Pan, Donghui
    Wang, Xinyu
    Xu, Yuping
    Yan, Junjie
    Wang, Lizhen
    Yang, Xifei
    Yang, Min
    Liu, Gong-Ping
    MEDCOMM, 2023, 4 (04):
  • [48] Multi-Omics Model Applied to Cancer Genetics
    Pettini, Francesco
    Visibelli, Anna
    Cicaloni, Vittoria
    Iovinelli, Daniele
    Spiga, Ottavia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [49] Multi-omics peripheral and core regions of cancer
    Wang, Bingbo
    Dong, Xianan
    Hu, Jie
    Gao, Lin
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2022, 8 (01)
  • [50] InterTADs: integration of multi-omics data on topologically associated domains, application to chronic lymphocytic leukemia
    Tsagiopoulou, Maria
    Pechlivanis, Nikolaos
    Maniou, Maria Christina
    Psomopoulos, Fotis
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (01)