The symmetric genus spectrum of abelian groups

被引:1
|
作者
May, Coy L. [1 ]
Zimmerman, Jay [1 ]
机构
[1] Towson Univ, 7800 York Rd, Towson, MD 21204 USA
关键词
Symmetric genus; strong symmetric genus; Riemann surface; abelian groups; genus spectrum; density;
D O I
10.26493/1855-3974.1921.d6f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S denote the set of positive integers that appear as the symmetric genus of a finite abelian group and let So denote the set of positive integers that appear as the strong symmetric genus of a finite abelian group. The main theorem of this paper is that S = S-0. As a result, we obtain a set of necessary and sufficient conditions for an integer g to belong to S. This also shows that S has an asymptotic density and that it is approximately 0.3284.
引用
收藏
页码:627 / 636
页数:10
相关论文
共 50 条
  • [41] DECOMPOSING FINITE ABELIAN GROUPS
    Cheung, Kevin K. H.
    Mosca, Michele
    QUANTUM INFORMATION & COMPUTATION, 2001, 1 (03) : 26 - 32
  • [42] Distribution of genus numbers of abelian number fields
    Frei, Christopher
    Loughran, Daniel
    Newton, Rachel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (06): : 2197 - 2217
  • [43] Varieties of abelian topological groups with coproducts
    Gabriyelyan, Saak S.
    Leiderman, Arkady G.
    Morris, Sidney A.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 241 - 251
  • [44] A note on algebraically compact abelian groups
    Danchev, P. V.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2007, 60 (04): : 347 - 348
  • [45] ABELIAN SYMMETRY GROUPS IN SOCIAL CHOICE
    KELLY, JS
    MATHEMATICAL SOCIAL SCIENCES, 1992, 25 (01) : 15 - 25
  • [46] P-COMPATIBLE ABELIAN GROUPS
    Mruczek-Nasieniewska, Krystyna
    LOGIC AND LOGICAL PHILOSOPHY, 2005, 14 (02) : 253 - 263
  • [47] DESCRIPTIVE COMPLEXITY OF FINITE ABELIAN GROUPS
    Gomaa, Walid
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2010, 20 (08) : 1087 - 1116
  • [48] CHARACTERISTIC SUBGROUPS OF FINITE ABELIAN GROUPS
    Kerby, Brent L.
    Rode, Emma
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) : 1315 - 1343
  • [49] A-SOLVABILITY AND MIXED ABELIAN GROUPS
    Albrecht, Ulrich
    Breaz, Simion
    Wickless, William
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 439 - 452
  • [50] THE GENERATING GRAPH OF INFINITE ABELIAN GROUPS
    Acciarri, Cristina
    Lucchini, Andrea
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (01) : 68 - 75