The symmetric genus spectrum of abelian groups

被引:1
|
作者
May, Coy L. [1 ]
Zimmerman, Jay [1 ]
机构
[1] Towson Univ, 7800 York Rd, Towson, MD 21204 USA
关键词
Symmetric genus; strong symmetric genus; Riemann surface; abelian groups; genus spectrum; density;
D O I
10.26493/1855-3974.1921.d6f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S denote the set of positive integers that appear as the symmetric genus of a finite abelian group and let So denote the set of positive integers that appear as the strong symmetric genus of a finite abelian group. The main theorem of this paper is that S = S-0. As a result, we obtain a set of necessary and sufficient conditions for an integer g to belong to S. This also shows that S has an asymptotic density and that it is approximately 0.3284.
引用
收藏
页码:627 / 636
页数:10
相关论文
共 50 条
  • [31] Computable topological abelian groups
    Lupini, Martino
    Melnikov, Alexander
    Nies, Andre
    JOURNAL OF ALGEBRA, 2023, 615 : 278 - 327
  • [32] Computable torsion abelian groups
    Melnikov, Alexander G.
    Ng, Keng Meng
    ADVANCES IN MATHEMATICS, 2018, 325 : 864 - 907
  • [33] REPRESENTATION FUNCTIONS ON ABELIAN GROUPS
    Ma, Wu-Xia
    Chen, Yong-Gao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (01) : 10 - 14
  • [34] ALGEBRAIC ENTROPY FOR ABELIAN GROUPS
    Dikranjan, Dikran
    Goldsmith, Brendan
    Salce, Luigi
    Zanardo, Paolo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) : 3401 - 3434
  • [35] ON ADJOINT ENTROPY OF ABELIAN GROUPS
    Goldsmith, B.
    Gong, K.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (03) : 972 - 987
  • [36] Abelian groups with a nice basis
    Danchev, P. V.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2007, 60 (03): : 219 - 224
  • [37] Reducible representations of abelian groups
    Atzmon, A
    ANNALES DE L INSTITUT FOURIER, 2001, 51 (05) : 1407 - +
  • [38] GENERALIZED ENDOPRIMAL ABELIAN GROUPS
    Albrecht, U.
    Breaz, S.
    Wickless, W.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (01) : 1 - 17
  • [39] Abelian groups acting on the line
    Guelman, Nancy
    Martinez, Matilde
    EXPOSITIONES MATHEMATICAE, 2024, 42 (06)
  • [40] On A-nilpotent abelian groups
    Nasrabadi, Mohammad Mehdi
    Gholamian, Ali
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (04): : 517 - 525