Supersymmetry and the spontaneous breakdown of PT symmetry

被引:254
作者
Dorey, P [1 ]
Dunning, C
Tateo, R
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 28期
关键词
D O I
10.1088/0305-4470/34/28/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The appearances of complex eigenvalues in the spectra of PT-symmetric quantum mechanical systems are usually associated with a spontaneous breaking of PT. In this Letter we discuss a family of models for which this phenomenon is also linked with an explicit breaking of supersymmetry. Exact level-crossings are located, and connections with N-fold supersymmetry and quasi-exact solvability in certain special cases are pointed out.
引用
收藏
页码:L391 / L400
页数:10
相关论文
共 44 条
[1]   General forms of a N-fold supersymmetric family [J].
Aoyama, H ;
Sato, M ;
Tanaka, T .
PHYSICS LETTERS B, 2001, 503 (3-4) :423-429
[2]  
AOYAMA H, 2000, QUANTPH0012065
[3]   Spectral determinants for Schrodinger equation and Q-operators of conformal field theory [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (3-4) :567-576
[4]  
BAZHANOV VV, 1998, HEPTH9812247
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[8]   Quasi-exactly solvable systems and orthogonal polynomials [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) :6-11
[9]   Comment on a recent paper by Mezincescu [J].
Bender, CM ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (15) :3325-3328
[10]   Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians [J].
Bender, CM ;
Berry, M ;
Meisinger, PN ;
Savage, VM ;
Simsek, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (06) :L31-L36