A NOVEL BAYESIAN GRAPHICAL MODEL AND PERFECT MONTE CARLO EM ALGORITHM FOR AUTOMATED COLOCALIZATION ESTIMATION IN MULTICHANNEL FLUORESCENCE MICROSCOPY

被引:0
作者
Radhakrishnan, Thyagarajan [1 ]
Reddy, K. Krishna Harsha [2 ,3 ]
Awate, Suyash P. [1 ]
机构
[1] Indian Inst Technol IIT Bombay, Bombay, Maharashtra, India
[2] Univ Illinois, Champaign, IL USA
[3] Indian Inst Technol, Bombay, Maharashtra, India
来源
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018) | 2018年
关键词
Fluorescence microscopy; colocalization; background removal; Gibbs sampling; convergence; perfect sampling; Bayesian MRF model; Monte Carlo EM; pseudo-likelihood; SEGMENTATION; IMAGES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In digital fluorescence microscopy, colocalization estimate between two biological entities within a specimen is often based on subjective visual inspection of images or ad hoc sequence of algorithms with several manually-tuned parameters, leading to irreproducible and unreliable estimates. We propose a novel Bayesian Markov random field (MRF) model for colocalization estimation from dual-channel images, encoding colocalization as a model parameter, to solve a unified data-driven optimization problem that, unlike existing methods, automatically deals with common-background removal, object labeling, parameter tuning, and noise. For model fitting, we propose Monte Carlo expectation maximization (EM) with perfect sampling extended from priors to posteriors, for our MRF model, to guarantee sampler convergence. We use consistent pseudo-likelihood estimators to deal with intractability in MRF parameter estimation. Results on simulated, benchmark, and real-world data show that our method estimates colocalization more reliably than the state of the art.
引用
收藏
页码:1583 / 1587
页数:5
相关论文
共 31 条
[1]  
[Anonymous], 2013, Advances in modern statistical theory and applications: a Festschrift in Honor of Morris L. Eaton, DOI DOI 10.1214/12-IMSCOLL1003
[2]  
Awate Suyash P, 2015, Inf Process Med Imaging, V24, P3, DOI 10.1007/978-3-319-19992-4_1
[3]   Stochastic model of protein-protein interaction: Why signaling proteins need to be colocalized [J].
Batada, NN ;
Shepp, LA ;
Siegmund, DO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6445-6449
[4]   A guided tour into subcellular colocalization analysis in light microscopy [J].
Bolte, S. ;
Cordelieres, F. P. .
JOURNAL OF MICROSCOPY, 2006, 224 (213-232) :213-232
[5]  
Chang M, 1996, OPT ENG, V35, P97
[6]  
Costes SV, 2004, BIOPHYS J, V86, P3993, DOI [10.1529/biophysj.103.038422, 10.1529/biophysi.103.038422]
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]   Perfect sampling: A review and applications to signal processing [J].
Djuric, PM ;
Huang, YF ;
Ghirmai, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :345-356
[9]   A practical guide to evaluating colocalization in biological microscopy [J].
Dunn, Kenneth W. ;
Kamocka, Malgorzata M. ;
McDonald, John H. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2011, 300 (04) :C723-C742
[10]  
Han DF, 2011, LECT NOTES COMPUT SC, V6801, P245, DOI 10.1007/978-3-642-22092-0_21