Fast inverse design of microstructures via generative invariance networks

被引:35
作者
Lee, Xian Yeow [1 ]
Waite, Joshua R. [1 ]
Yang, Chih-Hsuan [1 ]
Pokuri, Balaji Sesha Sarath [1 ]
Joshi, Ameya [2 ]
Balu, Aditya [1 ]
Hegde, Chinmay [2 ]
Ganapathysubramanian, Baskar [1 ]
Sarkar, Soumik [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA USA
[2] NYU, Tandon Sch Engn, Brooklyn, NY USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 03期
关键词
MODELS;
D O I
10.1038/s43588-021-00045-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The problem of the efficient design of material microstructures exhibiting desired properties spans a variety of engineering and science applications. The ability to rapidly generate microstructures that exhibit user-specified property distributions can transform the iterative process of traditional microstructure-sensitive design. We reformulate the microstructure design process using a constrained generative adversarial network (GAN) model. This approach explicitly encodes invariance constraints within GANs to generate two-phase morphologies for photovoltaic applications obeying design specifications: specifically, user-defined short-circuit current density and fill factor combinations. Such invariance constraints can be represented by differentiable, deep learning-based surrogates of full physics models mapping microstructures to photovoltaic properties. Furthermore, we propose a multi-fidelity surrogate that reduces expensive label requirements by a factor of five. Our framework enables the incorporation of expensive or non-differentiable constraints for the fast generation of microstructures (in 190 ms) with user-defined properties. Such proposed physics-aware data-driven methods for inverse design problems can be used to considerably accelerate the field of microstructure-sensitive design.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 47 条
[1]  
[Anonymous], 2019, ADV NEUR IN
[2]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.24433/CO.1250930.V1
[3]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.24433/CO.3688453.V1
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.2580293
[5]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.2580293
[6]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.4552777
[7]   ORGANIC ELECTRONICS Addressing challenges [J].
Anthony, John E. .
NATURE MATERIALS, 2014, 13 (08) :773-775
[8]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[9]   AMultifidelity Framework and Uncertainty Quantification for Sea Surface Temperature in the Massachusetts and Cape Cod Bays [J].
Babaee, H. ;
Bastidas, C. ;
DeFilippo, M. ;
Chryssostomidis, C. ;
Karniadakis, G. E. .
EARTH AND SPACE SCIENCE, 2020, 7 (02)
[10]  
Balu A., 2020, P ASME 2020 INT DES