Modeling and Performance Analysis of Highly Efficient Copper Indium Gallium Selenide Solar Cell with Cu2O Hole Transport Layer Using Solar Cell Capacitance Simulator in One Dimension

被引:24
作者
Sultana, Most. Rifat [1 ]
Islam, Benjer [1 ]
Al Ahmed, Sheikh Rashel [1 ]
机构
[1] Pabna Univ Sci & Technol, Dept Elect Elect & Commun Engn, Pabna 6600, Bangladesh
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2022年 / 219卷 / 05期
关键词
copper indium gallium selenide; Cu2O; efficiency improvements; hole transport layers; Solar Cell Capacitance Simulator in One Dimension; thin-film solar cells; TUNGSTEN DISULFIDE WS2; NUMERICAL-SIMULATION; WINDOW LAYER; ENHANCEMENT; DEPENDENCE; INTERFACE; CDS/CDTE; ELECTRON;
D O I
10.1002/pssa.202100512
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, the widely available and cheapest cuprous oxide (Cu2O) as hole transport layer (HTL) is proposed to improve the performance of thin-film copper indium gallium selenide (CIGS) solar cell. Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D) is utilized to design and study output characteristics of the modeled photovoltaic (PV) cell. A comparison between the proposed cell with Cu2O HTL and the reference CIGS solar cell is presented. The PV performances of CIGS solar cells are analyzed by changing thickness, carrier density and defects of different layers, operating temperatures, and recombination velocity at back contact. Optimal thicknesses of Cu2O HTL, CIGS absorber, cadmium sulfide (CdS) buffer, and the fluorine-doped tin oxide (FTO) window layer are obtained to be 0.3, 0.8, 0.05, and 0.05 mu m, respectively. Efficiency of 30.30% is achieved for the proposed CIGS PV device with Cu2O HTL. The simulated results imply that the proposed Cu2O as HTL can be used to show proficient and cost-effective thin-film CIGS PV cells.
引用
收藏
页数:11
相关论文
共 77 条
[1]  
Ahamed EMKI, 2017, 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION ENGINEERING (ECCE), P428, DOI 10.1109/ECACE.2017.7912942
[2]   Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering [J].
Ahmed, Ayyaz ;
Riaz, Kashif ;
Mehmood, Haris ;
Tauqeer, Tauseef ;
Ahmad, Zubair .
OPTICAL MATERIALS, 2020, 105
[3]   Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se2-Based Thin Film Solar Cells [J].
Alhammadi, Salh ;
Park, Hyeonwook ;
Kim, Woo Kyoung .
MATERIALS, 2019, 12 (09)
[4]   Performance Enhancement of an MoS2-Based Heterojunction Solar Cell with an In2Te3 Back Surface Field: A Numerical Simulation Approach [J].
Ali, Md Hasan ;
Al Mamun, Md Abdullah ;
Haque, Md Dulal ;
Rahman, Md Ferdous ;
Hossain, M. Khalid ;
Islam, Abu Zafor Md Touhidul .
ACS OMEGA, 2023, 8 (07) :7017-7029
[5]  
AlZoubi Tariq, 2019, International Journal of Smart Grid and Clean Energy, V8, P291, DOI [10.12720/sgce.8.3.291-298, 10.12720/sgce.8.3.291-298]
[6]   Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness [J].
Amin, Nowshad ;
Sopian, Kamaruzzaman ;
Konagai, Makoto .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (13) :1202-1208
[7]   Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se2-based solar cells [J].
Ando, Yuta ;
Ishizuka, Shogo ;
Wang, Shenghao ;
Chen, Jingdong ;
Islam, Muhammad Monirul ;
Shibata, Hajime ;
Akimoto, Katsuhiro ;
Sakurai, Takeaki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (08)
[8]   Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon [J].
Astakhov, Oleksandr ;
Carius, Reinhard ;
Finger, Friedhelm ;
Petrusenko, Yuri ;
Borysenko, Valery ;
Barankov, Dmytro .
PHYSICAL REVIEW B, 2009, 79 (10)
[9]   Numerical analysis of a novel CNT/Cu2O/Sb2Se3/In2S3/ITO antimony selenide solar cell [J].
Baig, Faisal ;
Hameed Khattak, Yousaf ;
Beg, Saira ;
Mari Soucase, Bernabe .
OPTIK, 2019, 197
[10]  
Benami A., 2019, Energy Power Eng, V13, P32