Symplectic rigidity, symplectic fixed points, and global perturbations of Hamiltonian systems

被引:21
作者
Dragnev, Dragomir L. [1 ]
机构
[1] Univ So Calif, Courant Inst, Los Angeles, CA 90089 USA
关键词
D O I
10.1002/cpa.20203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a generalized symplectic fixed-point problem, first considered by J. Moser in [20], from the point of view of some relatively recently discovered symplectic rigidity phenomena. This problem has interesting applications concerning global perturbations of Hamiltonian systems. (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:346 / 370
页数:25
相关论文
共 25 条
[1]  
Biran P, 2003, DUKE MATH J, V119, P65
[2]  
Bolle P, 1998, MATH Z, V227, P211, DOI 10.1007/PL00004373
[3]   Symplectic homology and periodic orbits near symplectic submanifolds [J].
Cieliebak, K ;
Ginzburg, VL ;
Kerman, E .
COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (03) :554-581
[4]   SYMPLECTIC HOMOLOGY .2. A GENERAL CONSTRUCTION [J].
CIELIEBAK, K ;
FLOER, A ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (01) :103-122
[5]  
Cieliebak K, 1996, MATH Z, V223, P27, DOI 10.1007/BF02621587
[6]  
DRAGNEV D, UNPUB RIGID COISOTRO
[7]   SYMPLECTIC TOPOLOGY AND HAMILTONIAN-DYNAMICS [J].
EKELAND, I ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 200 (03) :355-378
[8]   SYMPLECTIC TOPOLOGY AND HAMILTONIAN-DYNAMICS .2. [J].
EKELAND, I ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (04) :553-567
[9]  
EKELAND I, 1990, J MATH PURE APPL, V68, P467