Ambipolar Graphene-Quantum Dot Phototransistors with CMOS Compatibility

被引:63
作者
Zheng, Li [1 ]
Zhou, Wenjia [2 ]
Ning, Zhijun [2 ]
Wang, Gang [3 ]
Cheng, Xinhong [1 ]
Hu, Weida [4 ]
Zhou, Wen [1 ]
Liu, Zhiduo [5 ]
Yang, Siwei [1 ]
Xu, Kaimin [2 ]
Luo, Man [4 ]
Yu, Yuehui [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Ningbo Univ, Fac Sci, Dept Microelect Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[5] Chinese Acad Sci, Inst Semicond, CAS Ctr Excellence Brain Sci & Intelligence Techn, State Key Lab Integrated Optoelect, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
ambipolar phototransistors; CMOS compatibility; colloidal quantum dots; decorated graphene; FIELD-EFFECT TRANSISTOR; BROAD-BAND; LAYER; PHOTOVOLTAICS; DEPOSITION; PROBE;
D O I
10.1002/adom.201800985
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hybridization of 2D materials and colloidal quantum dots (CQDs) has been demonstrated to be an ideal platform for infrared photodetectors due to the high mobility of 2D materials and the excellent light harvesting capability of CQDs. However, the realization of ambipolar, broadband, and room-temperature graphene-quantum dot phototransistors with complementary metal-oxide-semiconductor (CMOS) compatibility remains challenging. Here N, S codecorated graphene is deposited with PbS CQDs to fabricate a hybrid phototransistor on a silicon dioxide/silicon gate. The resulting device demonstrates a gate-tuneable ambipolar feature with a low gate bias of less than 3.3 V at room temperature in ambient. Broadband spectra from visible to near-infrared and to short wave infrared (SWIR) light can be detected with gain value of up to 10(5) and a fast response of 3 ms. Upon illumination by SWIR light at 1550 nm, the phototransistor exhibits an ultrahigh responsivity that is on the order of 10(4) AW(-1) and a specific detectivity that is on the order of 10(12) Jones with a low driving voltage of 1 V. This decorated hybrid architecture illustrates the potential of graphene and CQDs to be integrated with silicon integrated circuits and opens a new path toward ambipolar photodetector fabrication.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Photovoltage field-effect transistors [J].
Adinolfi, Valerio ;
Sargent, Edward H. .
NATURE, 2017, 542 (7641) :324-+
[2]   Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer [J].
Adinolfi, Valerio ;
Kramer, Illan J. ;
Labelle, Andre J. ;
Sutherland, Brandon R. ;
Hoogland, S. ;
Sargent, Edward H. .
ACS NANO, 2015, 9 (01) :356-362
[3]   Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions [J].
Cao, En ;
Guo, Xiao ;
Zhang, Liqiang ;
Shi, Ying ;
Lin, Weihua ;
Liu, Xiaochun ;
Fang, Yurui ;
Zhou, Liyan ;
Sun, Yinghui ;
Song, Yuzhi ;
Liang, Wenjie ;
Sun, Mengtao .
ADVANCED MATERIALS INTERFACES, 2017, 4 (24)
[4]   Solution-processed semiconductors for next-generation photodetectors (vol 2, 16100, 2017) [J].
de Arquer, F. Pelayo Garcia ;
Armin, Ardalan ;
Meredith, Paul ;
Sargent, Edward H. .
NATURE REVIEWS MATERIALS, 2017, 2 (03)
[5]   Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-vis-IR photodetectors [J].
Ding, Yao ;
Zhou, Nan ;
Gan, Lin ;
Yan, Xingxu ;
Wu, Ruizhe ;
Abidi, Irfan H. ;
Waleed, Aashir ;
Pan, Jie ;
Ou, Xuewu ;
Zhang, Qicheng ;
Zhuang, Minghao ;
Wang, Peng ;
Pan, Xiaoqing ;
Fan, Zhiyong ;
Zhai, Tianyou ;
Luo, Zhengtang .
NANO ENERGY, 2018, 49 :200-208
[6]   Fully Depleted InP Nano-Layer for In-Device Passivation of InGaAs SWIR Detectors [J].
Dolas, M. Halit ;
Kocaman, Serdar .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (12) :1692-1695
[7]   A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases [J].
Dontschuk, Nikolai ;
Stacey, Alastair ;
Tadich, Anton ;
Rietwyk, Kevin J. ;
Schenk, Alex ;
Edmonds, Mark T. ;
Shimoni, Olga ;
Pakes, Chris I. ;
Prawer, Steven ;
Cervenka, Jiri .
NATURE COMMUNICATIONS, 2015, 6
[8]   Light-matter interaction in a microcavity-controlled graphene transistor [J].
Engel, Michael ;
Steiner, Mathias ;
Lombardo, Antonio ;
Ferrari, Andrea C. ;
Loehneysen, Hilbert V. ;
Avouris, Phaedon ;
Krupke, Ralph .
NATURE COMMUNICATIONS, 2012, 3
[9]   Graphene-Antenna Sandwich Photodetector [J].
Fang, Zheyu ;
Liu, Zheng ;
Wang, Yumin ;
Ajayan, Pulickel M. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2012, 12 (07) :3808-3813
[10]   Microcavity-Integrated Graphene Photodetector [J].
Furchi, Marco ;
Urich, Alexander ;
Pospischil, Andreas ;
Lilley, Govinda ;
Unterrainer, Karl ;
Detz, Hermann ;
Klang, Pavel ;
Andrews, Aaron Maxwell ;
Schrenk, Werner ;
Strasser, Gottfried ;
Mueller, Thomas .
NANO LETTERS, 2012, 12 (06) :2773-2777