Maximal operators and singular integrals on the weighted Lorentz and Morrey spaces

被引:0
作者
Nguyen Minh Chuong [1 ]
Dao Van Duong [2 ]
Kieu Huu Dung [3 ]
机构
[1] Vietnamese Acad Sci & Technol, Inst Math, Hanoi, Vietnam
[2] Mientrung Univ Civil Engn, Sch Math, Phu Yen, Vietnam
[3] Univ Transport & Commun, Sch Math, Hanoi, Vietnam
关键词
Maximal function; Sublinear operator; Strongly singular integral; Commutator; A(p) weight; A(p; 1); weight; A(p)(phi) weight; BMO space; Lorentz spaces; Morrey spaces; NORM INEQUALITIES; PSEUDODIFFERENTIAL-OPERATORS; SUBLINEAR-OPERATORS; HARDY; COMMUTATORS; BOUNDEDNESS; POTENTIALS; STOKES; NAVIER; LP;
D O I
10.1007/s11868-019-00277-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give some new characterizations of Muckenhoupt type weights through establishing the boundedness of maximal operators on the weighted Lorentz and Morrey spaces. Secondly, we establish the boundedness of sublinear operators including many interesting in harmonic analysis and its commutators on the weighted Morrey spaces. Finally, as an application, the boundedness of strongly singular integral operators and commutators with symbols in BMO space are also given.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 53 条
[31]   Morrey-type Space and Its Kothe Dual Space [J].
Mastylo, Mieczyslaw ;
Sawano, Yoshihiro ;
Tanaka, Hitoshi .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) :1181-1198
[32]   Besov-Morrey spaces: Function space theory and applications to non-linear PDE [J].
Mazzucato, AL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (04) :1297-1364
[33]   On the solutions of quasi-linear elliptic partial differential equations [J].
Morrey, Charles B., Jr. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :126-166
[34]   WEIGHTED NORM INEQUALITIES FOR HARDY MAXIMAL FUNCTION [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) :207-+
[35]   HARDY-LITTLEWOOD MAXIMAL OPERATOR, SINGULAR INTEGRAL-OPERATORS AND THE RIESZ-POTENTIALS ON GENERALIZED MORREY SPACES [J].
NAKAI, E .
MATHEMATISCHE NACHRICHTEN, 1994, 166 :95-103
[36]  
Nakai E., 2004, SCI MATH JPN, V10, P39
[37]   The singular integral operator and its commutator on weighted Morrey spaces [J].
Nakamura, Shohei ;
Sawano, Yoshihiro .
COLLECTANEA MATHEMATICA, 2017, 68 (02) :145-174
[38]  
Pan Y., 1991, Rev. Mat. Iberoam., V7, P55
[39]   END-POINT ESTIMATES FOR COMMUTATORS OF SINGULAR INTEGRAL-OPERATORS [J].
PEREZ, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) :163-185
[40]  
Ruiz A., 1991, Publ. Math., V35, P291