Maximal operators and singular integrals on the weighted Lorentz and Morrey spaces

被引:0
作者
Nguyen Minh Chuong [1 ]
Dao Van Duong [2 ]
Kieu Huu Dung [3 ]
机构
[1] Vietnamese Acad Sci & Technol, Inst Math, Hanoi, Vietnam
[2] Mientrung Univ Civil Engn, Sch Math, Phu Yen, Vietnam
[3] Univ Transport & Commun, Sch Math, Hanoi, Vietnam
关键词
Maximal function; Sublinear operator; Strongly singular integral; Commutator; A(p) weight; A(p; 1); weight; A(p)(phi) weight; BMO space; Lorentz spaces; Morrey spaces; NORM INEQUALITIES; PSEUDODIFFERENTIAL-OPERATORS; SUBLINEAR-OPERATORS; HARDY; COMMUTATORS; BOUNDEDNESS; POTENTIALS; STOKES; NAVIER; LP;
D O I
10.1007/s11868-019-00277-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give some new characterizations of Muckenhoupt type weights through establishing the boundedness of maximal operators on the weighted Lorentz and Morrey spaces. Secondly, we establish the boundedness of sublinear operators including many interesting in harmonic analysis and its commutators on the weighted Morrey spaces. Finally, as an application, the boundedness of strongly singular integral operators and commutators with symbols in BMO space are also given.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 53 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
Alvarez J., 1986, REV MAT IBEROAMERICA, V2, P405, DOI DOI 10.4171/RMI/42
[3]  
Alvarez J., 2000, Collect. Math., V51, P1
[4]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[5]  
[Anonymous], 2008, MODERN FOURIER ANAL
[6]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[7]  
Caffarelli L. A., 1988, REND SEM MAT FIS, V58, P253, DOI DOI 10.1007/BF02925245
[8]   Estimates for oscillatory strongly singular integral operators [J].
Cho, Chu-Hee ;
Yang, Chan Woo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) :523-533
[9]   THE HARDY-LITTLEWOOD MAXIMAL-FUNCTION ON L(P,Q) SPACES WITH WEIGHTS [J].
CHUNG, HM ;
HUNT, RA ;
KURTZ, DS .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :109-120
[10]  
CHUONG N. M., 2018, Pseudodifferential operators and wavelets over real and p-adic fields