Learning from biology: synthetic lipoproteins for drug delivery

被引:58
作者
Huang, Huang [1 ,2 ]
Cruz, William [1 ,2 ]
Chen, Juan [2 ]
Zheng, Gang [2 ,3 ]
机构
[1] DLVR Therapeut Inc, Toronto, ON, Canada
[2] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
关键词
LOW-DENSITY-LIPOPROTEIN; APOLIPOPROTEIN-A-I; B TYPE-I; PLAQUE TARGETING MECHANISM; SOLID LIPID NANOPARTICLES; SCAVENGER RECEPTOR B1; LDL RECEPTOR; PROSTATE-CANCER; CHOLESTERYL ESTERS; SELECTIVE UPTAKE;
D O I
10.1002/wnan.1308
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (<30 nm), high biocompatibility, favorable circulation half-life, and natural ability to bind specific lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:298 / 314
页数:17
相关论文
共 143 条
[1]   Liposome: classification, preparation, and applications [J].
Akbarzadeh, Abolfazl ;
Rezaei-Sadabady, Rogaie ;
Davaran, Soodabeh ;
Joo, Sang Woo ;
Zarghami, Nosratollah ;
Hanifehpour, Younes ;
Samiei, Mohammad ;
Kouhi, Mohammad ;
Nejati-Koshki, Kazem .
NANOSCALE RESEARCH LETTERS, 2013, 8
[2]   Gold Nanocrystal Labeling Allows Low-Density Lipoprotein Imaging from the Subcellular to Macroscopic Level [J].
Allijn, Iris E. ;
Leong, Wei ;
Tang, Jun ;
Gianella, Anita ;
Mieszawska, Aneta J. ;
Fay, Francois ;
Ma, Ge ;
Russell, Stewart ;
Callo, Catherine B. ;
Gordon, Ronald E. ;
Korkmaz, Emine ;
Post, Jan Andries ;
Zhao, Yiming ;
Gerritsen, Hans C. ;
Thran, Axel ;
Proksa, Roland ;
Daerr, Heiner ;
Storm, Gert ;
Fuster, Valentin ;
Fisher, Edward A. ;
Fayad, Zahi A. ;
Mulder, Willem J. M. ;
Cormode, David P. .
ACS NANO, 2013, 7 (11) :9761-9770
[3]   Solid lipid nanoparticles as a drug delivery system for peptides and proteins [J].
Almeida, Antonio J. ;
Souto, Eliana .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (06) :478-490
[4]   High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport [J].
Assmann, G ;
Schulte, H ;
vonEckardstein, A ;
Huang, YD .
ATHEROSCLEROSIS, 1996, 124 :S11-S20
[5]  
Baillie G, 2002, J LIPID RES, V43, P69
[6]  
Bamrungsap S, 2012, NANOMEDICINE-UK, V7, P1253, DOI [10.2217/NNM.12.87, 10.2217/nnm.12.87]
[7]   High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions [J].
Barter, P ;
Kastelein, J ;
Nunn, A ;
Hobbs, R .
ATHEROSCLEROSIS, 2003, 168 (02) :195-211
[8]   Nanodisc-Incorporated Hemagglutinin Provides Protective Immunity against Influenza Virus Infection [J].
Bhattacharya, Palash ;
Grimme, Steve ;
Ganesh, Balaji ;
Gopisetty, Anupama ;
Sheng, Jian Rong ;
Martinez, Osvaldo ;
Jayarama, Shankar ;
Artinger, Michael ;
Meriggioli, Matthew ;
Prabhakar, Bellur S. .
JOURNAL OF VIROLOGY, 2010, 84 (01) :361-371
[9]   Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100 [J].
Borén, J ;
Lee, I ;
Zhu, WM ;
Arnold, K ;
Taylor, S ;
Innerarity, TL .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (05) :1084-1093
[10]   Reconstituted Lipoprotein: A Versatile Class of Biologically-Inspired Nanostructures [J].
Bricarello, Daniel A. ;
Smilowitz, Jennifer T. ;
Zivkovic, Angela M. ;
German, J. Bruce ;
Parikh, Atul N. .
ACS NANO, 2011, 5 (01) :42-57