Existence Of Multiple Solutions For A Kirchhoff Type Equation Involving Polyharmonic Operator With Exponential Growth

被引:0
作者
Dwivedi, Gaurav [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Pilani Campus, Jhunjhunu, Rajasthan, India
来源
APPLIED MATHEMATICS E-NOTES | 2021年 / 21卷
关键词
INEQUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish the existence of three weak solutions for a nonlinear Kirchhoff type elliptic equation involving polyharmonic operator by using variational methods. We assume that the nonlinearity satisfies subcritical exponential growth condition. We use a critical point theorem by B. Ricceri to prove our result.
引用
收藏
页码:577 / 586
页数:10
相关论文
共 20 条
  • [1] A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES
    ADAMS, DR
    [J]. ANNALS OF MATHEMATICS, 1988, 128 (02) : 385 - 398
  • [2] Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations
    Colasuonno, Francesca
    Pucci, Patrizia
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5962 - 5974
  • [3] do O JM, 2015, ADV NONLINEAR STUD, V15, P867
  • [4] El Manouni S, 2012, TAIWAN J MATH, V16, P901
  • [5] Three solutions for a class of higher dimensional singular problems
    Faraci, Francesca
    Smyrlis, George
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (04):
  • [6] Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems
    Ferrara, Massimiliano
    Khademloo, Somaye
    Heidarkhani, Shapour
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 316 - 325
  • [7] The Nehari manifold for a quasilinear polyharmonic equation with exponential nonlinearities and a sign-changing weight function
    Goyal, Sarika
    Sreenadh, Konijeti
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2015, 4 (03) : 177 - 200
  • [8] Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem
    Heidarkhani, Shapour
    Khademloo, Somaye
    Solimaninia, Arezoo
    [J]. PORTUGALIAE MATHEMATICA, 2014, 71 (01) : 39 - 61
  • [9] Kirchhoff G., 1876, Teubner
  • [10] Lakkis O., 1999, ADV DIFFER EQU, V4, P877