Best approximation rate of constants by simple partial fractions and Chebyshev alternance

被引:5
作者
Komarov, M. A. [1 ]
机构
[1] Vladimir State Univ, Vladimir, Russia
基金
俄罗斯基础研究基金会;
关键词
best approximation of constants; simple partial fraction; Chebyshev alternance; CRITERION;
D O I
10.1134/S0001434615050077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of interpolation and best uniform approximation of constants c not equal 0 by simple partial fractions rho (n) of order n on an interval [a, b]. (All functions and numbers considered are real.) For the case in which n > 4|c|(b - a), we prove that the interpolation problem is uniquely solvable, obtain upper and lower bounds, sharp in order n, for the interpolation error on the set of all interpolation points, and show that the poles of the interpolating fraction lie outside the disk with diameter [a, b]. We obtain an analog of Chebyshev's classical theorem on the minimum deviation of a monic polynomial of degree n from a constant. Namely, we show that, for n > 4|c|(b - a), the best approximation fraction rho* (n) for the constant c on [a, b] is unique and can be characterized by the Chebyshev alternance of n+1 points for the difference rho* (n) - c. For theminimum deviations, we obtain an estimate sharp in order n.
引用
收藏
页码:725 / 737
页数:13
相关论文
共 17 条
[1]  
Bakhvalov N. S., 1973, Numerical methods (analysis, algebra, ordinary differential equations)
[2]   Criterion for the appearance of singular nodes under interpolation by simple partial fractions [J].
Danchenko, V. I. ;
Kondakova, E. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 278 (01) :41-50
[3]   Chebyshev's alternance in the approximation of constants by simple partial fractions [J].
Danchenko, V. I. ;
Kondakova, E. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 270 (01) :80-90
[4]  
Danchenko V. I., 1999, FUNCTION THEORY ITS, P74
[5]   Sufficient condition for the best uniform approximation by simple partial fractions [J].
Komarov M.A. .
Journal of Mathematical Sciences, 2013, 189 (3) :482-489
[6]   An Example of Non-Uniqueness of a Simple Partial Fraction of the Best Uniform Approximation [J].
Komarov, M. A. .
RUSSIAN MATHEMATICS, 2013, 57 (09) :22-30
[7]   A criterion for the best approximation of constants by simple partial fractions [J].
Komarov, M. A. .
MATHEMATICAL NOTES, 2013, 93 (1-2) :250-256
[8]  
Komarov M. A., IZV ROSS AK IN PRESS
[9]   Interpolation by the Simplest Fractions [J].
Kondakova, E. N. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2009, 9 (02) :30-37
[10]  
Kosukhin O. N., 2001, Moscow Univ. Math. Bull., V56, P36