Time cardinality constrained mean-variance dynamic portfolio selection and market timing: A stochastic control approach

被引:37
|
作者
Gao, Jianjun [1 ,2 ]
Li, Duan [3 ]
Cui, Xiangyu [4 ]
Wang, Shouyang [5 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[4] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
关键词
Multi-period portfolio selection; Multi-period mean-variance formulation; Stochastic control; Cardinality constraint; Market timing; OPTIMIZATION; STRATEGIES; BANKRUPTCY;
D O I
10.1016/j.automatica.2015.01.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An investor does not always invest in risky assets in all the time periods, often due to a market timing consideration and various forms of market friction, including the management fee. Motivated by this observed common phenomenon, this paper considers the time cardinality constrained mean-variance dynamic portfolio selection problem (TCCMV) in markets with correlated returns and in which the number of time periods to invest in risky assets is limited. Both the analytical optimal portfolio policy and the analytical expression of the efficient mean-variance (MV) frontier are derived for TCCMV. It is interesting to note whether investing in risky assets or not in a given time period depends entirely on the realization of the two adaptive processes which are closely related to the local optimizer of the conditional Sharpe ratio. By implementing such a solution procedure for different cardinalities, the MV dynamic portfolio selection problem with management fees can be efficiently solved for a purpose of developing the best market timing strategy. The final product of our solution framework is to provide investors advice on the best market timing strategy including the best time cardinality and its distribution, as well as the corresponding investment policy, when balancing the consideration of market opportunity and market frictions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [31] Continuous-time mean-variance portfolio selection: A reinforcement learning framework
    Wang, Haoran
    Zhou, Xun Yu
    MATHEMATICAL FINANCE, 2020, 30 (04) : 1273 - 1308
  • [32] Continuous-time mean-variance portfolio selection with liability and regime switching
    Me, Shuxiang
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 148 - 155
  • [33] Continuous-Time Mean-Variance Portfolio Selection Problem with Ho-Lee Stochastic Interest Rates
    Lin, Chuangwei
    Zeng, Li
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2017), 2017, 153 : 20 - 26
  • [34] An HJB approach to a general continuous-time mean-variance stochastic control problem
    Aivaliotis, Georgios
    Veretennikov, A. Yu
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2018, 26 (04) : 225 - 234
  • [35] Multiperiod mean-variance portfolio selection with intertemporal restrictions and correlated returns
    Wu, Weiping
    Yu, Dian
    Wang, Tongyao
    Gao, Jianjun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2347 - 2352
  • [36] MULTIPERIOD MEAN-VARIANCE CUSTOMER CONSTRAINED PORTFOLIO OPTIMIZATION FOR FINITE DISCRETE-TIME MARKOV CHAINS
    Dominguez, Florentino
    Clempner, Julio B.
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2019, 53 (01): : 39 - 56
  • [37] Credibilitic mean-variance model for multi-period portfolio selection problem with risk control
    Zhang, Wei-Guo
    Liu, Yong-Jun
    OR SPECTRUM, 2014, 36 (01) : 113 - 132
  • [38] Beyond Mean-Variance Markowitz Portfolio Selection: A Comparison of Mean-Variance-Skewness-Kurtosis Model and Robust Mean-Variance Model
    Gubu, La
    Rashif, Muhamad
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2024, 58 (01): : 298 - 313
  • [39] Mean-variance portfolio selection with estimation risk and transaction costs
    Mei, Xiaoling
    Zhu, Huanjun
    Chen, Chongzhu
    APPLIED ECONOMICS, 2023, 55 (13) : 1436 - 1453
  • [40] Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability
    Yao, Haixiang
    Li, Zhongfei
    Li, Duan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 252 (03) : 837 - 851