S-packing colorings of cubic graphs

被引:36
作者
Gastineau, Nicolas [1 ]
Togni, Olivier [1 ]
机构
[1] Univ Bourgogne Franche Comte, Arts & Metiers, CNRS, LE2I UMR6306, F-21000 Dijon, France
关键词
Graph; Coloring; Packing chromatic number; Cubic graph; CHROMATIC NUMBER; SQUARE;
D O I
10.1016/j.disc.2016.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a non-decreasing sequence S = (s(1), s(2),., s(k)) of positive integers, an S-packing coloring of a graph G is a mapping c from V(G) to {si, s2, sk} such that any two vertices with the ith color are at mutual distance greater than s(i), 1 <= i <= k. This paper studies S-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are (1, 2, 2, 2, 2, 2, 2)-packing colorable and (1, 1, 2, 2, 2)-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order 38 which is not (1, 2,..., 12)-packing colorable. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2461 / 2470
页数:10
相关论文
共 19 条
[1]   SOME LARGE GRAPHS WITH GIVEN DEGREE AND DIAMETER [J].
ALEGRE, I ;
FIOL, MA ;
YEBRA, JLA .
JOURNAL OF GRAPH THEORY, 1986, 10 (02) :219-224
[2]  
Borodin O., 2011, J. Appl. Ind. Math., V5, P535
[3]   On the packing chromatic number of Cartesian products, hexagonal lattice, and trees [J].
Bresar, Bostjan ;
Klavzar, Sandi ;
Rall, Douglas F. .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) :2303-2311
[4]   Packing Chromatic Number of Base-3 SierpiA"ski Graphs [J].
Bresar, Bostjan ;
Klavzar, Sandi ;
Rall, Douglas F. .
GRAPHS AND COMBINATORICS, 2016, 32 (04) :1313-1327
[5]   List-coloring the square of a subcubic graph [J].
Cranston, Daniel W. ;
Kim, Seog-Jin .
JOURNAL OF GRAPH THEORY, 2008, 57 (01) :65-87
[6]  
Ekstein J., 2010, ARXIV10032291V1
[7]   Complexity of the packing coloring problem for trees [J].
Fiala, Jiri ;
Golovach, Petr A. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (07) :771-778
[8]   The packing chromatic number of infinite product graphs [J].
Fiala, Jiri ;
Klavzar, Sandi ;
Lidicky, Bernard .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1101-1113
[9]   On the packing chromatic number of some lattices [J].
Finbow, Arthur S. ;
Rall, Douglas F. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) :1224-1228
[10]   Subdivision into i-packings and S-packing chromatic number of some lattices [J].
Gastineau, Nicolas ;
Kheddouci, Hamamache ;
Togni, Olivier .
ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) :331-354