Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution

被引:73
作者
Tariq, Kalim U. [1 ,2 ]
Younis, Muhammad [3 ]
Rezazadeh, Hadi [4 ]
Rizvi, S. T. R. [5 ]
Osman, M. S. [6 ]
机构
[1] Mirpur Univ Sci & Technol, Dept Math, Mirpur 10250, Ajk, Pakistan
[2] Jiangsu Univ, Dept Math, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Univ Punjab, Ctr Undergrad Studies, Lahore 54590, Pakistan
[4] Amol Univ Special Modern Technol, Fac Modern Technol Engn, Amol, Iran
[5] COMSATS Inst Informat Technol, Dept Math, Lahore, Pakistan
[6] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 26期
关键词
Single and combined optical solitons; fractional temporal evolution NLSE; quadratic-cubic nonlinearity; SUB-EQUATION METHOD; HOMOTOPY PERTURBATION METHOD; GINZBURG-LANDAU EQUATION; POWER-LAW NONLINEARITY; VARIABLE-COEFFICIENTS; DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; CONSERVATION-LAWS; MONOMODE FIBERS; WAVE SOLUTIONS;
D O I
10.1142/S0217984918503177
中图分类号
O59 [应用物理学];
学科分类号
摘要
The paper studies the single and combined optical solitons in the physical model of telecommunication system that describes the dynamics of optical solitons with quadratic-cubic nonlinearity in the mitigate internet bottleneck. This fractional temporal evolution is considerd with the coefficients of self-steeping, group velocity, inter-model and nonlinear dispersions. The extended Fan sub-equation method is used to investigate the families of single optical solitons (bright, dark and singular) for the different values of parameters.
引用
收藏
页数:13
相关论文
共 50 条
[1]  
Agarwal G. P., 2001, NONLINEAR FIBER OPTI
[2]   Solitons in Optical Metamaterials by Functional Variable Method and First Integral Approach [J].
Biswas, Anjan ;
Mirzazadeh, M. ;
Eslami, Mostafa ;
Milovic, Daniela ;
Belic, Milivoj .
FREQUENZ, 2014, 68 (11-12) :525-530
[3]  
Bulut H., 2014, Int. J. Model. Optim, V4, P315, DOI [10.7763/IJMO.2014.V4.392, DOI 10.7763/IJMO.2014.V4.392]
[4]   Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion [J].
Ekici, M. ;
Mirzazadeh, M. ;
Eslami, M. .
NONLINEAR DYNAMICS, 2016, 84 (02) :669-676
[5]  
Eslami M, 2016, NONLINEAR DYNAM, V85, P813, DOI 10.1007/s11071-016-2724-2
[6]   Optical solitons with Biswas-Milovic equation for power law and dual-power law nonlinearities [J].
Eslami, M. ;
Mirzazadeh, M. .
NONLINEAR DYNAMICS, 2016, 83 (1-2) :731-738
[7]   First integral method to look for exact solutions of a variety of Boussinesq-like equations [J].
Eslami, M. ;
Mirzazadeh, M. .
OCEAN ENGINEERING, 2014, 83 :133-137
[8]   Exact solutions for Fitzhugh-Nagumo model of nerve excitation via Kudryashov method [J].
Foroutan, Mohammadreza ;
Manafian, Jalil ;
Taghipour-Farshi, Hamed .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)
[9]   The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics [J].
Guo, Shimin ;
Mei, Liquan ;
Li, Ying ;
Sun, Youfa .
PHYSICS LETTERS A, 2012, 376 (04) :407-411
[10]   Extended trial equation method to generalized nonlinear partial differential equations [J].
Gurefe, Yusuf ;
Misirli, Emine ;
Sonmezoglu, Abdullah ;
Ekici, Mehmet .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5253-5260