Metallization of ZnO nanowires from partial hydrogen adsorption

被引:21
作者
Jia, Jianming
Shi, Daning [1 ]
Zhao, Jijun
Wang, Baolin
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Phys, Nanjing 210016, Peoples R China
[2] Huaiyin Teachers Coll, Jiangsu Key Lab Chem Low Dimens Mat, Huaian 223001, Jiangsu, Peoples R China
[3] Huaiyin Teachers Coll, Dept Phys, Huaian 223001, Jiangsu, Peoples R China
[4] Dalian Univ Technol, State Key Lab Mat Modificat Laser Electron & Ion, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
[6] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[7] Huaiyin Inst Technol, Dept Phys, Huaian 223001, Jiangsu, Peoples R China
关键词
D O I
10.1088/0957-4484/18/45/455708
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
First-principle density functional calculations of [0001] ZnO nanowires demonstrate that exposure of the mixed-terminated {01 (1) over bar0} side surfaces to atomic hydrogen can result in drastic changes of electronic properties. When the dangling bonds of the side surfaces are completely saturated by H atoms, the nanowires are insulating, with band gaps much higher than that of bulk solid. In contrast, the ZnO nanowires with only O atoms saturated by atomic H on the side surfaces are metallic. The physical mechanism for the remarkable changes is discussed. These theoretical results suggest a new way of band engineering ZnO nanowires.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Highly textured and conductive undoped ZnO film using hydrogen post-treatment [J].
Baik, SJ ;
Jang, JH ;
Lee, CH ;
Cho, WY ;
Lim, KS .
APPLIED PHYSICS LETTERS, 1997, 70 (26) :3516-3518
[2]   Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide [J].
Cox, SFJ ;
Davis, EA ;
Cottrell, SP ;
King, PJC ;
Lord, JS ;
Gil, JM ;
Alberto, HV ;
Vilao, RC ;
Duarte, JP ;
de Campos, NA ;
Weidinger, A ;
Lichti, RL ;
Irvine, SJC .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2601-2604
[3]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[4]   Zinc oxide nanostructures: Synthesis and properties [J].
Fan, ZY ;
Lu, JG .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (10) :1561-1573
[5]   Quantum confinement in ZnO nanorods [J].
Gu, Y ;
Kuskovsky, IL ;
Yin, M ;
O'Brien, S ;
Neumark, GF .
APPLIED PHYSICS LETTERS, 2004, 85 (17) :3833-3835
[6]   Hydrogen: A relevant shallow donor in zinc oxide [J].
Hofmann, DM ;
Hofstaetter, A ;
Leiter, F ;
Zhou, HJ ;
Henecker, F ;
Meyer, BK ;
Orlinskii, SB ;
Schmidt, J ;
Baranov, PG .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4
[7]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[8]   ELECTRON CORRELATION IN SEMICONDUCTORS AND INSULATORS - BAND-GAPS AND QUASI-PARTICLE ENERGIES [J].
HYBERTSEN, MS ;
LOUIE, SG .
PHYSICAL REVIEW B, 1986, 34 (08) :5390-5413
[9]   Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO [J].
Ip, K ;
Overberg, ME ;
Heo, YW ;
Norton, DP ;
Pearton, SJ ;
Stutz, CE ;
Luo, B ;
Ren, F ;
Look, DC ;
Zavada, JM .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :385-387
[10]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775