Local search and pseudoinversion: an hybrid approach to neural network training

被引:1
作者
Rubini, Luca [1 ]
Cancelliere, Rossella [1 ]
Gallinari, Patrick [2 ]
Grosso, Andrea [1 ]
机构
[1] Univ Turin, Dept Comp Sci, Turin, Italy
[2] Univ Paris 06, Comp Sci Lab, LIP6, Paris, France
关键词
Neural networks; Random projections; Local search; Pseudoinverse matrix; EXTREME LEARNING-MACHINE; SPECIAL-ISSUE;
D O I
10.1007/s10115-016-0935-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider recent successful techniques proposed for neural network training that set randomly the weights from input to hidden layer, while weights from hidden to output layer are analytically determined by Moore-Penrose generalized inverse. This study aimed to analyse the impact on performances when the completely random sampling of the space of input weights is replaced by a local search procedure over a discretized set of weights. The performances of the proposed training methods are assessed through computational experience on several UCI datasets.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 25 条
  • [1] Aarts E., 2003, Local search in combinatorial optimization
  • [2] Achlioptas D, 2001, P 20 ACM SIGMOD SIGA, DOI [DOI 10.1145/375551.375608, 10.1145/375551.375608]
  • [3] Ajorloo H, 2007, 22 INT S COMP INF SC
  • [4] [Anonymous], 1984, C MODERN ANAL PROBAB
  • [5] [Anonymous], 1963, Soviet Math
  • [6] Asuncion A., 2007, Uci machine learning repository
  • [7] Badeva V., 1991, PROBLEMES INCORRECTE
  • [8] An analysis of numerical issues in neural training by pseudoinversion
    Cancelliere, R.
    Deluca, R.
    Gai, M.
    Gallinari, P.
    Rubini, L.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01) : 599 - 609
  • [9] A new Tikhonov regularization method
    Fuhry, Martin
    Reichel, Lothar
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (03) : 433 - 445
  • [10] Practical complexity control in multilayer perceptrons
    Gallinari, P
    Cibas, T
    [J]. SIGNAL PROCESSING, 1999, 74 (01) : 29 - 46