Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation

被引:34
作者
Lindholm-Sethson, Britta [1 ]
Nystrom, Josefina [1 ]
Malmsten, Martin [2 ]
Ringstad, Lovisa [2 ]
Nelson, Andrew [3 ]
Geladi, Paul [4 ]
机构
[1] Umea Univ, Dept Chem, S-90187 Umea, Sweden
[2] Uppsala Univ, Dept Pharm, S-75123 Uppsala, Sweden
[3] Univ Leeds, Sch Chem, Ctr Mol Nanosci, Leeds LS2 9JT, W Yorkshire, England
[4] SLU, Unit Biomass Technol & Chem, S-90183 Umea, Sweden
关键词
Impedance; Biosensor; Complex number chemometrics; CARE CANCER DIAGNOSTICS; LIPID MONOLAYERS; STRIATED MUSCLE; DNA; ELECTRODES; APTAMER; MERCURY; ENZYME; IMMUNOSENSORS; NANOPARTICLES;
D O I
10.1007/s00216-010-4027-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Electrochemical impedance spectroscopy plays an important role in biosensor science thanks to the possibility of finding specific information from processes with different kinetics at a chosen electrode potential in one experiment. In this paper we briefly discuss label-free impedimetric biosensors described in the literature. A novel method for neutral interpretation of impedance data is presented that includes complex number chemometrics. Three examples are given based on impedance measurements on synthetic biomembranes, in this case a lipid monolayer deposited on a mercury electrode. The interaction of various compounds with the monomolecular lipid layer is illustrated with the following: (1) different concentrations of magainin (Geladi et al. in Proc. Int. Fed. Med. Biomed. Eng. 9:219-220, 2005); (2) different derivatives of gramicidin A (Lindholm-Sethson et al. in Langmuir 24:5029-5032, 2007), and (3) an antimicrobial peptide (Ringstad et al. in Langmuir 24:208-216, 2008).
引用
收藏
页码:2341 / 2349
页数:9
相关论文
共 49 条
[1]   Frequency-dependent capacitance of the apical membrane of frog skin: Dielectric relaxation processes [J].
Awayda, MS ;
Van Driessche, W ;
Helman, SI .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :219-232
[2]   Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: Development of amperometric immunosensor electrodes [J].
Blonder, R ;
Katz, E ;
Cohen, Y ;
Itzhak, N ;
Riklin, A ;
Willner, I .
ANALYTICAL CHEMISTRY, 1996, 68 (18) :3151-3157
[3]   Label-free impedance biosensors: Opportunities and challenges [J].
Daniels, Jonathan S. ;
Pourmand, Nader .
ELECTROANALYSIS, 2007, 19 (12) :1239-1257
[4]   ACETYLCHOLINE RECEPTOR-BASED BIOSENSOR [J].
ELDEFRAWI, ME ;
SHERBY, SM ;
ANDREOU, AG ;
MANSOUR, NA ;
ANNAU, Z ;
BLUM, NA ;
VALDES, JJ .
ANALYTICAL LETTERS, 1988, 21 (09) :1665-1680
[5]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[6]   LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES [J].
FALK, G ;
FATT, P .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1964, 160 (978) :69-+
[7]   ANALYSIS OF TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE [J].
FATT, P .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1964, 159 (977) :606-+
[8]   Kinetic separation of amperometric sensor responses [J].
Forster, RJ .
ANALYST, 1996, 121 (06) :733-741
[9]  
FOSTER KR, 1989, CRIT REV BIOMED ENG, V17, P25
[10]   The electric capacity of suspensions with special reference to blood. [J].
Fricke, H .
JOURNAL OF GENERAL PHYSIOLOGY, 1925, 9 (02) :137-152