Developing non-invasive bladder cancer screening methodology through potentiometric multisensor urine analysis

被引:16
作者
Belugina, Regina [1 ]
Karpushchenko, Evgenii [2 ]
Sleptsov, Aleksandr [2 ]
Protoshchak, Vladimir [2 ]
Legin, Andrey [3 ]
Kirsanov, Dmitry [1 ,3 ]
机构
[1] ITMO Univ, St Petersburg, Russia
[2] SM Kirov Mil Med Acad, Urol Clin, St Petersburg, Russia
[3] St Petersburg State Univ, Inst Chem, Univ Sky Prospect 26, St Petersburg 198504, Russia
关键词
Bladder cancer; Multisensor system; Electronic tongue; Non-invasive screening; Classification; Machine learning; ELECTRONIC-NOSE;
D O I
10.1016/j.talanta.2021.122696
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report on the feasibility study exploring the potential of a simple electrochemical multisensor system as a tool for distinguishing between urine samples from patients with confirmed bladder cancer (36 samples) and healthy volunteers (51 samples). The potentiometric sensor responses obtained in urine samples were employed as the input data for various machine learning classification algorithms (logistic regression, random forest, extreme gradient boosting classifier, support vector machine, and voting classifier). The performance metrics of the classifiers were evaluated via Monte-Carlo cross-validation. The best model combining all the acquired data from the people aged 19-88 with different tumor grades and malignancies, including patients with recurrent bladder cancer, yielded 72% accuracy, 71% sensitivity, and 58% specificity. It was found that these metrics can be improved to 76% accuracy, 80% sensitivity, and 75% specificity when only a limited age group (50-88 years of age) is considered. Taking into account the simplicity of the proposed screening method, this technique appears to be a promising tool for further research.
引用
收藏
页数:7
相关论文
共 49 条
[1]  
[Anonymous], 2020, Cancer Today
[2]  
[Anonymous], 2010, P 9 PYTH SCI C, V445
[3]   Dithiothreitol-based protein equalization technology to unravel biomarkers for bladder cancer [J].
Araujo, J. E. ;
Lopez-Fernandez, H. ;
Diniz, M. S. ;
Baltazar, Pedro M. ;
Pinheiro, Luis Campos ;
da Silva, Fernando Calais ;
Carrascal, Mylene ;
Videira, Paula ;
Santos, H. M. ;
Capelo, J. L. .
TALANTA, 2018, 180 :36-46
[4]   A metabolic view on menopause and ageing [J].
Auro, Kirsi ;
Joensuu, Anni ;
Fischer, Krista ;
Kettunen, Johannes ;
Salo, Perttu ;
Mattsson, Hannele ;
Niironen, Marjo ;
Kaprio, Jaakko ;
Eriksson, Johan G. ;
Lehtimaki, Terho ;
Raitakari, Olli ;
Jula, Antti ;
Tiitinen, Aila ;
Jauhiainen, Matti ;
Soininen, Pasi ;
Kangas, Antti J. ;
Kahonen, Mika ;
Havulinna, Aki S. ;
Ala-Korpela, Mika ;
Salomaa, Veikko ;
Metspalu, Andres ;
Perola, Markus .
NATURE COMMUNICATIONS, 2014, 5
[5]   Differentiating cancer types using a urine test for volatile organic compounds [J].
Bannaga, Ayman S. ;
Kvasnik, Frank ;
Persaud, Krishna C. ;
Arasaradnam, Ramesh .
JOURNAL OF BREATH RESEARCH, 2021, 15 (01)
[6]  
Bassi P.F., 2020, EUR UROL OPEN SCI, pE79, DOI [10.1016/s2666-1683(20)30070-7, DOI 10.1016/S2666-1683(20)30070-7]
[7]   A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose [J].
Bernabei, M. ;
Pennazza, G. ;
Santortico, M. ;
Corsi, C. ;
Roscioni, C. ;
Paolesse, R. ;
Di Natale, C. ;
D'Amico, A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 131 (01) :1-4
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Bacterial ureases in infectious diseases [J].
Burne, RA ;
Chen, YYM .
MICROBES AND INFECTION, 2000, 2 (05) :533-542
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794