Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

被引:27
作者
Lazerson, Samuel A. [1 ]
Loizu, Joaquim [2 ]
Hirshman, Steven [3 ]
Hudson, Stuart R. [1 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
Codes (symbols) - Safety factor - Aspect ratio - Magnetoplasma;
D O I
10.1063/1.4939881
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (i) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, exciting a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (i = 1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Delta(i)) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (d(i)/d Phi, where i is the rotational transform and Phi the enclosed toroidal flux). Calculations of an implicit Delta(i) suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Delta(i)). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 11 条
[1]   Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks [J].
Hanson, J. D. ;
Anderson, D. T. ;
Cianciosa, M. ;
Franz, P. ;
Harris, J. H. ;
Hartwell, G. H. ;
Hirshman, S. P. ;
Knowlton, S. F. ;
Lao, L. L. ;
Lazarus, E. A. ;
Marrelli, L. ;
Maurer, D. A. ;
Schmitt, J. C. ;
Sontag, A. C. ;
Stevenson, B. A. ;
Terranova, D. .
NUCLEAR FUSION, 2013, 53 (08)
[2]   V3FIT: a code for three-dimensional equilibrium reconstruction [J].
Hanson, James D. ;
Hirshman, Steven P. ;
Knowlton, Stephen F. ;
Lao, Lang L. ;
Lazarus, Edward A. ;
Shields, John M. .
NUCLEAR FUSION, 2009, 49 (07)
[3]   STEEPEST-DESCENT MOMENT METHOD FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
WHITSON, JC .
PHYSICS OF FLUIDS, 1983, 26 (12) :3553-3568
[4]   Computation of multi-region relaxed magnetohydrodynamic equilibria [J].
Hudson, S. R. ;
Dewar, R. L. ;
Dennis, G. ;
Hole, M. J. ;
McGann, M. ;
von Nessi, G. ;
Lazerson, S. .
PHYSICS OF PLASMAS, 2012, 19 (11)
[5]   Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D [J].
King, J. D. ;
Strait, E. J. ;
Lazerson, S. A. ;
Ferraro, N. M. ;
Logan, N. C. ;
Haskey, S. R. ;
Park, J. -K. ;
Hanson, J. M. ;
Lanctot, M. J. ;
Liu, Yueqiang ;
Nazikian, R. ;
Okabayashi, M. ;
Paz-Soldan, C. ;
Shiraki, D. ;
Turnbull, A. D. .
PHYSICS OF PLASMAS, 2015, 22 (07)
[6]   Three-dimensional equilibrium reconstruction on the DIII-D device [J].
Lazerson, S. A. .
NUCLEAR FUSION, 2015, 55 (02)
[7]   Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets [J].
Loizu, J. ;
Hudson, S. R. ;
Bhattacharjee, A. ;
Lazerson, S. ;
Helander, P. .
PHYSICS OF PLASMAS, 2015, 22 (09)
[8]   Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria [J].
Loizu, J. ;
Hudson, S. ;
Bhattacharjee, A. ;
Helander, P. .
PHYSICS OF PLASMAS, 2015, 22 (02)
[9]   HYDROMAGNETIC STABILITY OF A DIFFUSE LINEAR PINCH [J].
NEWCOMB, WA .
ANNALS OF PHYSICS, 1960, 10 (02) :232-267
[10]   Measurement of a helical Pfirsch-Schluter current with reduced magnitude in HSX [J].
Schmitt, J. C. ;
Talmadge, J. N. ;
Anderson, D. T. .
NUCLEAR FUSION, 2013, 53 (08)