Modified granular impact force laws for the OSIRIS-REx touchdown on the surface of asteroid (101955) Bennu

被引:32
作者
Ballouz, R-L [1 ,7 ]
Walsh, K. J. [2 ]
Sanchez, P. [3 ]
Holsapple, K. A. [4 ]
Michel, P. [5 ]
Scheeres, D. J. [3 ]
Zhang, Y. [5 ]
Richardson, D. C. [6 ]
Barnouin, O. S. [7 ]
Nolan, M. C. [1 ]
Bierhaus, E. B. [8 ]
Connolly, H. C. [1 ,9 ]
Schwartz, S. R. [1 ]
Celik, O. [10 ]
Baba, M. [11 ]
Lauretta, D. S. [1 ]
机构
[1] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[2] Southwest Res Inst, Boulder, CO 80302 USA
[3] Univ Colorado, Boulder, CO 80309 USA
[4] POB 305, Medina, WA 98039 USA
[5] Univ Cote Azur, Lab Lagrange, Observ Cote Azur, CNRS, F-06300 Nice, France
[6] Univ Maryland, College Pk, MD 20742 USA
[7] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[8] Lockheed Martin Space, Littleton, CO 80120 USA
[9] Rowan Univ, Dept Geol, Glassboro, NJ 08028 USA
[10] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
[11] JAXA, Res & Dev Directorate, Sagamihara, Kanagawa 2060034, Japan
关键词
methods: numerical; minor planets; asteroids: general; asteroids: individual: 101955; LOW-VELOCITY IMPACTS; LANDER INTERACTION; THERMAL FATIGUE; PARTICLE-SIZE; REGOLITH; STRENGTH; IMPLEMENTATION; SIMULATIONS; DISRUPTIONS; ITOKAWA;
D O I
10.1093/mnras/stab2365
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The OSIRIS-REx mission collected a sample from the surface of the asteroid (101955) Bennu in 2020 October. Here, we study the impact of the OSIRIS-REx Touch-and-Go Sampling Acquisition Mechanism (TAGSAM) interacting with the surface of an asteroid in the framework of granular physics. Traditional approaches to estimating the penetration depth of a projectile into a granular medium include force laws and scaling relationships formulated from laboratory experiments in terrestrial-gravity conditions. However, it is unclear that these formulations extend to the OSIRIS-REx scenario of a 1300-kg spacecraft interacting with regolith in a microgravity environment. We studied the TAGSAM interaction with Bennu through numerical simulations using two collisional codes, pkdgrav and gdc-i. We validated their accuracy by reproducing the results of laboratory impact experiments in terrestrial gravity. We then performed TAGSAM penetration simulations varying the following geotechnical properties of the regolith: packing fraction (P), bulk density, inter-particle cohesion (sigma(c)), and angle of friction (phi). We find that the outcome of a spacecraft-regolith impact has a non-linear dependence on packing fraction. Closely packed regolith (P greater than or similar to 0.6) can effectively resist the penetration of TAGSAM if phi greater than or similar to 28 degrees and/or sigma(c) greater than or similar to 50Pa. For loosely packed regolith (P less than or similar to 0.5), the penetration depth is governed by a drag force that scales with impact velocity to the 4/3 power, consistent with energy conservation. We discuss the importance of low-speed impact studies for predicting and interpreting spacecraft-surface interactions. We show that these low-energy events also provide a framework for interpreting the burial depths of large boulders in asteroidal regolith.
引用
收藏
页码:5087 / 5105
页数:19
相关论文
共 99 条
[1]   Settling into dry granular media in different gravities [J].
Altshuler, E. ;
Torres, H. ;
Gonzalez-Pita, A. ;
Sanchez-Colina, G. ;
Perez-Penichet, C. ;
Waitukaitis, S. ;
Hidalgo, R. C. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (09) :3032-3037
[2]   An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime [J].
Arakawa, M. ;
Saiki, T. ;
Wada, K. ;
Ogawa, K. ;
Kadono, T. ;
Shirai, K. ;
Sawada, H. ;
Ishibashi, K. ;
Honda, R. ;
Sakatani, N. ;
Iijima, Y. ;
Okamoto, C. ;
Yano, H. ;
Takagi, Y. ;
Hayakawa, M. ;
Michel, P. ;
Jutzi, M. ;
Shimaki, Y. ;
Kimura, S. ;
Mimasu, Y. ;
Toda, T. ;
Imamura, H. ;
Nakazawa, S. ;
Hayakawa, H. ;
Sugita, S. ;
Morota, T. ;
Kameda, S. ;
Tatsumi, E. ;
Cho, Y. ;
Yoshioka, K. ;
Yokota, Y. ;
Matsuoka, M. ;
Yamada, M. ;
Kouyama, T. ;
Honda, C. ;
Tsuda, Y. ;
Watanabe, S. ;
Yoshikawa, M. ;
Tanaka, S. ;
Terui, F. ;
Kikuchi, S. ;
Yamaguchi, T. ;
Ogawa, N. ;
Ono, G. ;
Yoshikawa, K. ;
Takahashi, T. ;
Takei, Y. ;
Fujii, A. ;
Takeuchi, H. ;
Yamamoto, Y. .
SCIENCE, 2020, 368 (6486) :67-+
[3]   Bennu's near-Earth lifetime of 1.75 million years inferred from craters on its boulders [J].
Ballouz, R. -L. ;
Walsh, K. J. ;
Barnouin, O. S. ;
DellaGiustina, D. N. ;
Asad, M. Al ;
Jawin, E. R. ;
Daly, M. G. ;
Bottke, W. F. ;
Michel, P. ;
Avdellidou, C. ;
Delbo, M. ;
Daly, R. T. ;
Asphaug, E. ;
Bennett, C. A. ;
Bierhaus, E. B. ;
Connolly, H. C., Jr. ;
Golish, D. R. ;
Molaro, J. L. ;
Nolan, M. C. ;
Pajola, M. ;
Rizk, B. ;
Schwartz, S. R. ;
Trang, D. ;
Wolner, C. W. V. ;
Lauretta, D. S. .
NATURE, 2020, 587 (7833) :205-+
[4]  
Ballouz R.-L, 2017, THESIS U MARYLAND CO
[5]   Shape of (101955) Bennu indicative of a rubble pile with internal stiffness [J].
Barnouin, O. S. ;
Daly, M. G. ;
Palmer, E. E. ;
Gaskell, R. W. ;
Weirich, J. R. ;
Roberts, J. H. ;
Perry, M. E. ;
Daly, R. T. ;
Seabrook, J. A. ;
Espiritu, R. C. ;
Nair, A. H. ;
Nguyen, L. ;
Neumann, G. A. ;
Ernst, C. M. ;
Nolan, M. C. ;
Adam, C. D. ;
Moreau, M. C. ;
Rizk, B. ;
D'Aubigny, C. Y. Drouet ;
Jawin, E. R. ;
Walsh, K. J. ;
Michel, P. ;
Mazarico, E. M. ;
Scheeres, D. J. ;
McMahon, J. W. ;
Bottke, W. F. ;
Sugita, S. ;
Hirata, N. ;
Watanabe, S. -i. ;
Highsmith, D. E. ;
Small, J. ;
Vokrouhlicky, D. ;
Bowles, N. E. ;
Brown, E. ;
Hanna, K. L. Donaldson ;
Warren, T. ;
Brunet, C. ;
Chicoine, R. A. ;
Desjardins, S. ;
Gaudreau, D. ;
Haltigin, T. ;
Millington-Veloza, S. ;
Rubi, A. ;
Aponte, J. ;
Gorius, N. ;
Lunsford, A. ;
Allen, B. ;
Grindlay, J. ;
Guevel, D. ;
Hoak, D. .
NATURE GEOSCIENCE, 2019, 12 (04) :247-+
[6]  
Barnouin O.S., J GEOPHYS RES-PLANET
[7]   Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter [J].
Barnouin-Jha, Olivier S. ;
Cheng, Andrew F. ;
Mukai, Tadashi ;
Abe, Shinsuke ;
Hirata, Naru ;
Nakamura, Ryosuke ;
Gaskell, Robert W. ;
Saito, Jun ;
Clark, Beth E. .
ICARUS, 2008, 198 (01) :108-124
[8]   Survival times of meter-sized rock boulders on the surface of airless bodies [J].
Basilevsky, A. T. ;
Head, J. W. ;
Horz, F. ;
Ramsley, K. .
PLANETARY AND SPACE SCIENCE, 2015, 117 :312-328
[9]   The landing(s) of Philae and inferences about comet surface mechanical properties [J].
Biele, Jens ;
Ulamec, Stephan ;
Maibaum, Michael ;
Roll, Reinhard ;
Witte, Lars ;
Jurado, Eric ;
Munoz, Pablo ;
Arnold, Walter ;
Auster, Hans-Ulrich ;
Casas, Carlos ;
Faber, Claudia ;
Fantinati, Cinzia ;
Finke, Felix ;
Fischer, Hans-Herbert ;
Geurts, Koen ;
Guettler, Carsten ;
Heinisch, Philip ;
Herique, Alain ;
Hviid, Stubbe ;
Kargl, Guenter ;
Knapmeyer, Martin ;
Knollenberg, Joerg ;
Kofman, Wlodek ;
Koemle, Norbert ;
Kuehrt, Ekkehard ;
Lommatsch, Valentina ;
Mottola, Stefano ;
de Santayana, Ramon Pardo ;
Remetean, Emile ;
Scholten, Frank ;
Seidensticker, Klaus J. ;
Sierks, Holger ;
Spohn, Tilman .
SCIENCE, 2015, 349 (6247)
[10]   The putative mechanical strength of comet surface material applied to landing on a comet [J].
Biele, Jens ;
Ulamec, Stephan ;
Richter, Lutz ;
Knollenberg, Joerg ;
Kuehrt, Ekkehard ;
Moehlmann, Diedrich .
ACTA ASTRONAUTICA, 2009, 65 (7-8) :1168-1178