Contextual deconvolution network for semantic segmentation

被引:46
作者
Fu, Jun [1 ,2 ]
Liu, Jing [1 ]
Li, Yong [3 ]
Bao, Yongjun [3 ]
Yan, Weipeng [3 ]
Fang, Zhiwei [1 ,2 ]
Lu, Hanqing [1 ]
机构
[1] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] JD Com, Business Growth BU, Intelligent Advertising Lab, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Deconvolution network; Channel contextual module; Spatial contextual module;
D O I
10.1016/j.patcog.2019.107152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Contextual Deconvolution Network (CDN) and focus on context association in decoder network. Specifically, in upsampling path, we introduce two types of contextual modules to model the interdependencies of features in channel and spatial dimensions respectively. The channel contextual module captures image-level semantic information by aggregating the feature maps across spatial dimensions, and clarifies global ambiguity of features. Meanwhile, the spatial contextual module obtains patch-level semantic context by learning a spatial weight map, and enhance the feature discrimination. We embed the two contextual modules into individual components of the decoder network, thus improving the representation power and gaining more precise segment results. Thorough evaluations are performed on four challenging datasets, i.e., PASCAL VOC 2012, ADE20K, PASCAL-Context and Cityscapes dataset. Our approach achieves competitive performance with state-of-the-art models on PASCAL VOC 2012, ADE20K and Cityscapes dataset, and new state-of-the-art performance on PASCAL-Context dataset. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2010, INT J COMPUT VISION, DOI DOI 10.1007/s11263-009-0275-4
[2]  
[Anonymous], INT C LEARN REPR
[3]   Higher Order Conditional Random Fields in Deep Neural Networks [J].
Arnab, Anurag ;
Jayasumana, Sadeep ;
Zheng, Shuai ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :524-540
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]   The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks [J].
Berman, Maxim ;
Triki, Amal Rannen ;
Blaschko, Matthew B. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4413-4421
[6]  
Chen L.-C., 2017, C COMP VIS PATT REC
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]   When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs [J].
Cheng, Gong ;
Yang, Ceyuan ;
Yao, Xiwen ;
Guo, Lei ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05) :2811-2821
[9]   Duplex Metric Learning for Image Set Classification [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :281-292
[10]   LSI: Latent semantic inference for natural image segmentation [J].
Dong, Le ;
Feng, Ning ;
Zhang, Qianni .
PATTERN RECOGNITION, 2016, 59 :282-291