In situ and operando electrochemistry of redox enzymes

被引:10
作者
Sedenho, Graziela C. [1 ]
Hassan, Ayaz [2 ]
de Souza, Joao C. P. [3 ]
Crespilho, Frank N. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Chem, BR-13560970 Sao Carlos, SP, Brazil
[2] COMSATS Univ Islamabad, Interdiciplinary Res Ctr Biomed Mat, Lahore Campus 1 5 KM Def Rd Raiwind Rd, Lahore, Pakistan
[3] Goiano Fed Inst Educ Sci & Technol, Campus Rio Verde, BR-75901970 Rio Verde, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
Redox enzymes; Bioelectrochemistry; Spectroelectrochemistry; Spectromicroscopy; Differential electrochemical mass spectrometry; INFRARED-ABSORPTION SPECTROSCOPY; QUARTZ-CRYSTAL MICROBALANCE; ELECTRON-TRANSFER; PROTEIN; OXIDASE; RESONANCE; CLUSTER; CELL;
D O I
10.1016/j.coelec.2022.101015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the biocatalytic or the interfacial electron transfer processes of redox enzymes is decisive to develop high-performance biofuel cells, mimetic catalysts, bioelectrosynthesis reactors, biosensors, and bioelectronic devices. The state-of-art of redox enzyme electrochemistry lies in using in situ and operando instrumentation, in which protein electrochemistry is resourcefully coupled to or hyphenated with numerous analytical techniques. Nevertheless, there is still a lot to research about the manipulation of redox proteins in the unusual sample holding environments, and bioelectrodes engineering emerges as a key. Here, we discuss these challenges in detail, focusing on contemporary instrumentation setups.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Protein film electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules [J].
Abdiaziz, Kaltum ;
Salvadori, Enrico ;
Sokol, Katarzyna P. ;
Reisner, Erwin ;
Roessler, Maxie M. .
CHEMICAL COMMUNICATIONS, 2019, 55 (60) :8840-8843
[2]   Operando Electron Paramagnetic Resonance for Elucidating the Electron Transfer Mechanism of Coenzymes [J].
Ali, Mian A. ;
Hassan, Ayaz ;
Sedenho, Graziela C. ;
Goncalves, Renato V. ;
Cardoso, Daniel R. ;
Crespilho, Frank N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (26) :16058-16064
[3]   Unifying Activity, Structure, and Spectroscopy of [NiFe] Hydrogenases: Combining Techniques To Clarify Mechanistic Understanding [J].
Ash, Philip A. ;
Kendall-Price, Sophie E. T. ;
Vincent, Kylie A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (11) :3120-3131
[4]  
Ashton S.J., 2012, DESIGN CONSTRUCTION, P9
[5]   Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins [J].
Ataka, Kenichi ;
Stripp, Sven Timo ;
Heberle, Joachim .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2013, 1828 (10) :2283-2293
[6]   Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis [J].
Badiani, Vivek M. ;
Cobb, Samuel J. ;
Wagner, Andreas ;
Oliveira, Ana Rita ;
Zacarias, Sonia ;
Pereira, Ines A. C. ;
Reisner, Erwin .
ACS CATALYSIS, 2022, 12 (03) :1886-1897
[7]   SOME EXAMPLES OF THE USE OF THIN-LAYER SPECTROELECTROCHEMISTRY IN THE STUDY OF ELECTRON-TRANSFER BETWEEN METALS AND ENZYMES [J].
COMTAT, M ;
DURLIAT, H .
BIOSENSORS & BIOELECTRONICS, 1994, 9 (9-10) :663-668
[8]   Enzymatic X-ray absorption spectroelectrochemistry [J].
Czastka, Karolina ;
Oughli, Alaa A. ;
Ruediger, Olaf ;
DeBeer, Serena .
FARADAY DISCUSSIONS, 2022, 234 (00) :214-231
[9]   Oxygen electroreduction catalysed by laccase wired to gold nanoparticles via the trinuclear copper cluster [J].
Dagys, Marius ;
Laurynenas, Audrius ;
Ratautas, Dalius ;
Kulys, Juozas ;
Vidziunaite, Regina ;
Talaikis, Martynas ;
Niaura, Gediminas ;
Marcinkeviciene, Liucija ;
Meskys, Rolandas ;
Shleev, Sergey .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :498-502
[10]   In Situ and Operando Techniques for Investigating Electron Transfer in Biological Systems [J].
de Souza, Joao C. P. ;
Macedo, Lucyano J. A. ;
Hassan, Ayaz ;
Sedenho, Graziela C. ;
Modenez, Iago A. ;
Crespilho, Frank N. .
CHEMELECTROCHEM, 2021, 8 (03) :431-446