Magnetic field generation by intermittent convection

被引:13
作者
Chertovskih, R. [1 ,2 ]
Rempel, E. L. [3 ,4 ,5 ]
Chimanski, E. V. [3 ]
机构
[1] Univ Porto, Fac Engn, Res Ctr Syst & Technol, Rua Dr Roberto Frias,S-N, P-4200465 Oporto, Portugal
[2] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
[3] Aeronaut Inst Technol, Sao Jose Campos, BR-12228900 Sao Paulo, Brazil
[4] Natl Inst Space Res, Sao Jose Campos, BR-12227010 Sao Paulo, Brazil
[5] World Inst Space Environm Res, Sao Jose Campos, BR-12227010 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Magnetohydrodynamics; Rayleigh-Benard convection; Convective dynamo; Intermittency; TURBULENT DYNAMOS; DEPENDENCE; DRIVEN; FLOWS; INTENSITY; SHELLS; NUMBER; MODEL;
D O I
10.1016/j.physleta.2017.08.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetic field generation in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid is studied numerically by fixing the Prandtl number at P = 0.3 and varying the Rayleigh number (Ra) as a control parameter. A recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number (P-m(c)) for dynamo action is determined as a function of Ra. A mechanism for the onset of intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action in this transition to weak turbulence are identified, and the impact of intermittency on the dependence of P-m(c) on Ra is discussed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3300 / 3306
页数:7
相关论文
共 40 条
[1]   Effect of the Lorentz force on on-off dynamo intermittency [J].
Alexakis, Alexandros ;
Ponty, Yannick .
PHYSICAL REVIEW E, 2008, 77 (05)
[2]  
[Anonymous], 2007, EARTHQUAKE SEISMOLOG
[3]   An active sun throughout the Maunder Minimum [J].
Beer, J ;
Tobias, S ;
Weiss, N .
SOLAR PHYSICS, 1998, 181 (01) :237-249
[4]  
Brandenburg A, 2007, HANDBOOK OF THE SOLAR-TERRESTRIAL ENVIRONMENT, P27, DOI 10.1007/11367758_2
[5]   Homogeneous dynamos in planetary cores and in the laboratory [J].
Busse, FH .
ANNUAL REVIEW OF FLUID MECHANICS, 2000, 32 :383-408
[6]   Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: Single mode solutions [J].
Calkins, Michael A. ;
Julien, Keith ;
Tobias, Steven M. ;
Aurnou, Jonathan M. ;
Marti, Philippe .
PHYSICAL REVIEW E, 2016, 93 (02)
[7]   A multiscale dynamo model driven by quasi-geostrophic convection [J].
Calkins, Michael A. ;
Julien, Keith ;
Tobias, Steven M. ;
Aurnou, Jonathan M. .
JOURNAL OF FLUID MECHANICS, 2015, 780 :143-166
[8]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[9]  
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability
[10]   Route to hyperchaos in Rayleigh-Benard convection [J].
Chertovskih, R. ;
Chimanski, E. V. ;
Rempel, E. L. .
EPL, 2015, 112 (01)