Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization

被引:122
作者
Wang, Lin [1 ]
Li, Xiaozhong [1 ]
Zhang, Louxin [2 ]
Gao, Qiang [3 ]
机构
[1] Tianjin Univ Sci & Technol, Sch Comp Sci & Informat Engn, Tianjin 300457, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Tianjin Univ Sci & Technol, Coll Biotechnol, Key Lab Ind Fermentat Microbiol, Minist Educ & Tianjin City, Tianjin 300457, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Anticancer drug response prediction; Matrix factorization; Precision cancer medicines; Drug repositioning; GENE-EXPRESSION; BREAST-CANCER; SENSITIVITY PREDICTION; IDENTIFICATION; ALGORITHMS; LANDSCAPE; DISCOVERY; LAPATINIB; SELECTION; PATTERNS;
D O I
10.1186/s12885-017-3500-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Methods: Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. Results: We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug cancer gene associations that are consistent with existing data, and identify novel drug cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Conclusions: Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug cancer gene associations compared to existing data as well as aid in drug repositioning.
引用
收藏
页数:12
相关论文
共 34 条
[1]   Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization [J].
Amnnad-ud-din, Muhammad ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Laitinen, Tuomo ;
Kallioniemi, Olli ;
Wennerberg, Krister ;
Poso, Antti ;
Kaski, Samuel .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (08) :2347-2359
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]   An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules [J].
Basu, Amrita ;
Bodycombe, Nicole E. ;
Cheah, Jaime H. ;
Price, Edmund V. ;
Liu, Ke ;
Schaefer, Giannina I. ;
Ebright, Richard Y. ;
Stewart, Michelle L. ;
Ito, Daisuke ;
Wang, Stephanie ;
Bracha, Abigail L. ;
Liefeld, Ted ;
Wawer, Mathias ;
Gilbert, Joshua C. ;
Wilson, Andrew J. ;
Stransky, Nicolas ;
Kryukov, Gregory V. ;
Dancik, Vlado ;
Barretina, Jordi ;
Garraway, Levi A. ;
Hon, C. Suk-Yee ;
Munoz, Benito ;
Bittker, Joshua A. ;
Stockwell, Brent R. ;
Khabele, Dineo ;
Stern, Andrew M. ;
Clemons, Paul A. ;
Shamji, Alykhan F. ;
Schreiber, Stuart L. .
CELL, 2013, 154 (05) :1151-1161
[4]   Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer [J].
Boffa, DJ ;
Luan, FL ;
Thomas, D ;
Yang, H ;
Sharma, VK ;
Lagman, M ;
Suthanthiran, M .
CLINICAL CANCER RESEARCH, 2004, 10 (01) :293-300
[5]   Leveraging Big Data to Transform Target Selection and Drug Discovery [J].
Chen, B. ;
Butte, A. J. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2016, 99 (03) :285-297
[6]   Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel [J].
Cortes-Ciriano, Isidro ;
van Westen, Gerard J. P. ;
Bouvier, Guillaume ;
Nilges, Michael ;
Overington, John P. ;
Bender, Andreas ;
Malliavin, Therese E. .
BIOINFORMATICS, 2016, 32 (01) :85-95
[7]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57
[8]   Modeling precision treatment of breast cancer [J].
Daemen, Anneleen ;
Griffith, Obi L. ;
Heiser, Laura M. ;
Wang, Nicholas J. ;
Enache, Oana M. ;
Sanborn, Zachary ;
Pepin, Francois ;
Durinck, Steffen ;
Korkola, James E. ;
Griffith, Malachi ;
Hur, Joe S. ;
Huh, Nam ;
Chung, Jongsuk ;
Cope, Leslie ;
Fackler, Mary Jo ;
Umbricht, Christopher ;
Sukumar, Saraswati ;
Seth, Pankaj ;
Sukhatme, Vikas P. ;
Jakkula, Lakshmi R. ;
Lu, Yiling ;
Mills, Gordon B. ;
Cho, Raymond J. ;
Collisson, Eric A. ;
van't Veer, Laura J. ;
Spellman, Paul T. ;
Gray, Joe W. .
GENOME BIOLOGY, 2013, 14 (10)
[9]   Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection [J].
Dong, Zuoli ;
Zhang, Naiqian ;
Li, Chun ;
Wang, Haiyun ;
Fang, Yun ;
Wang, Jun ;
Zheng, Xiaoqi .
BMC CANCER, 2015, 15
[10]   Activation of EGFR, HER2 and HER3 by neurotensin/neurotensin receptor 1 renders breast tumors aggressive yet highly responsive to lapatinib and metformin in mice [J].
Dupouy, Sandra ;
Doan, Van Kien ;
Wu, Zherui ;
Mourra, Najat ;
Liu, Jin ;
De Wever, Olivier ;
Llorca, Frederique Penault ;
Cayre, Anne ;
Kouchkar, Amal ;
Gompel, Anne ;
Forgez, Patricia .
ONCOTARGET, 2014, 5 (18) :8235-8251