A New Approach to Equations with Memory

被引:122
作者
Fabrizio, Mauro [1 ]
Giorgi, Claudio [2 ]
Pata, Vittorino [3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] Univ Brescia, Dipartimento Matemat, I-25133 Brescia, Italy
[3] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
MINIMUM FREE-ENERGIES; EXPONENTIAL STABILITY; ASYMPTOTIC STABILITY; RELAXATION FUNCTIONS; VISCOELASTICITY; DISSIPATION; ATTRACTORS; SYSTEMS; STATE;
D O I
10.1007/s00205-010-0300-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a novel approach to the mathematical analysis of equations with memory, based on a new notion of state. This is the initial configuration of the system at time t = 0 which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function G : R+ R+ such that G(0) = lim s -> 0 G(s) > lim s ->infinity G(s) > 0 we consider an abstract version of the evolution equation partial derivative(tt)u(x, t) - Delta [G(0)u(x, t) + f(0)(infinity) G'(s)u(x, t - s)ds] = 0 arising from linear viscoelasticity.
引用
收藏
页码:189 / 232
页数:44
相关论文
共 50 条
[1]  
[Anonymous], 1992, SIAM STUD APPL MATH
[2]  
[Anonymous], 1913, LECONS EQUATIONS INT
[3]  
Boltzmann L., 1874, Wien Akad. Sitzungsber, V70, P275, DOI 10.1002/andp.18782411107
[4]  
Boltzmann L., 1878, ANN PHYS-NEW YORK, V241, P430, DOI [10.1002/andp.18782411107, 10.1002/ANDP.18782411107, DOI 10.1002/ANDP.18782411107]
[5]  
BREUER S, 1964, Z ANGEW MATH PHYS, V15, P12
[6]  
Chepyzhov VV, 2006, ASYMPTOTIC ANAL, V50, P269
[7]  
COLEMAN BD, 1966, ARCH RATION MECH AN, V23, P87
[8]  
COLEMAN BD, 1964, ARCH RATION MECH AN, V17, P1
[9]   FOUNDATIONS OF LINEAR VISCOELASTICITY [J].
COLEMAN, BD ;
NOLL, W .
REVIEWS OF MODERN PHYSICS, 1961, 33 (02) :239-249
[10]  
COLEMAN BD, 1968, ARCH RATION MECH AN, V29, P18