We study the stability issue for the inverse problem of determining a coefficient appearing in a Schrodinger equation defined on an infinite cylin-drical waveguide. More precisely, we prove the stable recovery of some general class of non-compactly and non periodic coefficients appearing in an unbounded cylindrical domain. We consider both results of stability from full and partial boundary measurements associated with the so called Dirichlet-to-Neumann map.
引用
收藏
页码:929 / 950
页数:22
相关论文
共 40 条
[1]
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI DOI 10.1080/00036818808839730
[2]
Ammari H, 2004, INDIANA U MATH J, V53, P169
[3]
[Anonymous], 1980, SEM NUM AN ITS APPL, DOI DOI 10.1590/S0101-82052006000200002