STABLE RECOVERY OF A NON-COMPACTLY SUPPORTED COEFFICIENT OF A SCHRODINGER EQUATION ON AN INFINITE WAVEGUIDE

被引:1
作者
Soussi, Yosra [1 ,2 ]
机构
[1] Univ Tunis El Manar, Ecole Natl Ingn Tunis, ENIT LAMSIN, BP 37, Tunis 1002, Tunisia
[2] Aix Marseille Univ, Univ Toulon, CPT, CNRS, Marseille, France
关键词
stability estimate; Schrodinger equation; electric potential; Dirichlet-to-Neumann map; infinite cylindrical waveguide; partial data; Carleman's estimate; Inverse  problem; CALDERON PROBLEM; INVERSE PROBLEMS; PARTIAL DIRICHLET; STABILITY RESULT; POTENTIALS; UNIQUENESS;
D O I
10.3934/ipi.2021022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability issue for the inverse problem of determining a coefficient appearing in a Schrodinger equation defined on an infinite cylin-drical waveguide. More precisely, we prove the stable recovery of some general class of non-compactly and non periodic coefficients appearing in an unbounded cylindrical domain. We consider both results of stability from full and partial boundary measurements associated with the so called Dirichlet-to-Neumann map.
引用
收藏
页码:929 / 950
页数:22
相关论文
共 40 条