Deconvolving Cumulative Density from Associated Random Processes

被引:0
作者
Benjrada, Mohammed Es-salih [1 ]
Djaballah, Khedidja [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Dept Probabil & Stat, Algiers, Algeria
来源
THAILAND STATISTICIAN | 2022年 / 20卷 / 02期
关键词
Deconvolution of cumulative densities; positively associated processes; quadratic-mean convergence; asymptotic normality; RANDOM-VARIABLES; DECONVOLUTION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The main purpose of the present paper is to discuss the problem of estimating the unknown cumulative density function F(x) of X when only corrupted observations Y = X + epsilon are present, where X and epsilon are independent unobservable random variables and epsilon is a measurement error with a known distribution. For a sequence of strictly stationary and positively associated random variables and assuming that the tail of the characteristic function of epsilon behaves either as super smooth or ordinary smooth errors, we obtain the precise asymptotic expressions, the bounds on the mean-square estimation error and the asymptotic normality.
引用
收藏
页码:240 / 270
页数:31
相关论文
共 28 条