RC-graphs and a generalized Littlewood-Richardson rule

被引:0
作者
Kogan, M [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:765 / 782
页数:18
相关论文
共 16 条
[1]   Schubert polynomials, the Bruhat order, and the geometry of flag manifolds [J].
Bergeron, N ;
Sottile, F .
DUKE MATHEMATICAL JOURNAL, 1998, 95 (02) :373-423
[2]  
BERGERON N, MATHCO9810025
[3]  
Bergeron N., 1993, Experiment. Math, V2, P257
[4]   SOME COMBINATORIAL PROPERTIES OF SCHUBERT POLYNOMIALS [J].
BILLEY, SC ;
JOCKUSCH, W ;
STANLEY, RP .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (04) :345-374
[5]   SCHUBERT POLYNOMIALS AND THE NILCOXETER ALGEBRA [J].
FOMIN, S ;
STANLEY, RP .
ADVANCES IN MATHEMATICS, 1994, 103 (02) :196-207
[6]   The Yang-Baxter equation, symmetric functions, and Schubert polynomials [J].
Fomin, S ;
Kirillov, AN .
DISCRETE MATHEMATICS, 1996, 153 (1-3) :123-143
[7]  
Fulton W., 1997, LONDON MATH SOC STUD, V35
[8]   PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX [J].
KNUTH, DE .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (03) :709-&
[9]  
KOGAN M, IN PRESS P AM MATH S
[10]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V294, P447