Bounded elements in certain topological partial *-algebras

被引:8
作者
Antoine, Jean-Pierre [1 ]
Trapani, Camillo [2 ]
Tschinke, Francesco [3 ]
机构
[1] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
[2] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
[3] Univ Palermo, Fac Ingn, Dipartimento Metodi & Modelli Matemat, I-90128 Palermo, Italy
关键词
bounded elements; partial *-algebras;
D O I
10.4064/sm203-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue our study of topological partial *-algebras, focusing on the interplay between various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between strong and weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *-algebras, emphasizing the crucial role played by appropriate bounded elements, called M-bounded. Finally, some remarks are made concerning representations in terms of so-called partial GC*-algebras of operators.
引用
收藏
页码:223 / 251
页数:29
相关论文
共 15 条
[1]  
ALLAN GR, 1965, P LOND MATH SOC, V15, P399
[2]  
[Anonymous], 1990, UNBOUNDED OPERATOR A
[3]   Continuous *-homomorphisms of Banach partial *-algebras [J].
Antoine, Jean-Pierre ;
Trapani, Camillo ;
Tschinke, Francesco .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (03) :357-373
[4]   Spectral Properties of Partial *-Algebras [J].
Antoine, Jean-Pierre ;
Trapani, Camillo ;
Tschinke, Francesco .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (02) :123-142
[5]  
ANTOINE JP, 2002, PARTIAL ALGEBRAS THE
[6]  
Bonsall F. F., 1973, COMPLETE NORMED ALGE
[7]   A Representation Theorem for Archimedean Quadratic Modules on *-Rings [J].
Cimpric, Jakob .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (01) :39-52
[8]  
PALMER TW, 2001, ENCY MATH APPL, V79
[9]   A strict Positivstellensatz for the Weyl algebra [J].
Schmüdgen, K .
MATHEMATISCHE ANNALEN, 2005, 331 (04) :779-794
[10]  
Schmüdgen K, 2002, J OPERAT THEOR, V48, P487