VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies

被引:89
作者
Chen, Mengjie [1 ,2 ]
Zhou, Xiang [3 ,4 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
TRANSCRIPTIONAL HETEROGENEITY; SEQ; RECONSTRUCTION; LINEAGE;
D O I
10.1186/s13059-018-1575-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We develop a method, VIPER, to impute the zero values in single-cell RNA sequencing studies to facilitate accurate transcriptome quantification at the single-cell level. VIPER is based on nonnegative sparse regression models and is capable of progressively inferring a sparse set of local neighborhood cells that are most predictive of the expression levels of the cell of interest for imputation. A key feature of our method is its ability to preserve gene expression variability across cells after imputation. We illustrate the advantages of our method through several well-designed real data-based analytical experiments.
引用
收藏
页数:15
相关论文
共 49 条
[1]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[2]   Biased Allelic Expression in Human Primary Fibroblast Single Cells [J].
Borel, Christelle ;
Ferreira, Pedro G. ;
Santoni, Federico ;
Delaneau, Olivier ;
Fort, Alexandre ;
Popadin, Konstantin Y. ;
Garieri, Marco ;
Falconnet, Emilie ;
Ribaux, Pascale ;
Guipponi, Michel ;
Padioleau, Ismael ;
Carninci, Piero ;
Dermitzakis, Emmanouil T. ;
Antonarakis, Stylianos E. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (01) :70-80
[3]  
Chen M, 2018, SOURCE CODE, DOI [10.5281/zenodo.1403919, DOI 10.5281/ZENODO.1403919]
[4]  
Chen M, 2018, CODE GITHUB REPOSITO
[5]  
Chen M, 2018, SOURCE CODE GITHUB R
[6]  
Chen M, 2018, CODE ZENODO, DOI [10.5281/zenodo.1403921, DOI 10.5281/ZENODO.1403921]
[7]   Controlling for Confounding Effects in Single Cell RNA Sequencing Studies Using both Control and Target Genes [J].
Chen, Mengjie ;
Zhou, Xiang .
SCIENTIFIC REPORTS, 2017, 7
[8]   Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm [J].
Chu, Li-Fang ;
Leng, Ning ;
Zhang, Jue ;
Hou, Zhonggang ;
Mamott, Daniel ;
Vereide, David T. ;
Choi, Jeea ;
Kendziorski, Christina ;
Stewart, Ron ;
Thomson, James A. .
GENOME BIOLOGY, 2016, 17
[9]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[10]   Reconstruction of the Mouse Otocyst and Early Neuroblast Lineage at Single-Cell Resolution [J].
Durruthy-Durruthy, Robert ;
Gottlieb, Assaf ;
Hartman, Byron H. ;
Waldhaus, Joerg ;
Laske, Roman D. ;
Altman, Russ ;
Heller, Stefan .
CELL, 2014, 157 (04) :964-978