A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation

被引:59
作者
Zhao, Feng [1 ]
Jiao, Licheng [1 ]
Liu, Hanqiang [1 ]
Gao, Xinbo [1 ]
机构
[1] Xidian Univ, Inst Intelligent Informat Proc, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Fuzzy clustering algorithm; Non local spatial constraint; Adaptive spatial parameter; Magnetic resonance (MR) image; MEAN SHIFT; INFORMATION;
D O I
10.1016/j.sigpro.2010.10.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions (GIFP_FCM) is a novel fuzzy clustering algorithm. However when GIFP_FCM is applied to image segmentation, it is sensitive to noise in the image because of ignoring the spatial information contained in the pixels. In order to solve this problem, a novel fuzzy clustering algorithm with non local adaptive spatial constraint (FCA_NLASC) is proposed in this paper. In the proposed method, a novel non local adaptive spatial constraint term is introduced to modify the objective function of GIFP_FCM. The characteristic of this technique is that the adaptive spatial parameter for each pixel is designed to make the non local spatial information of each pixel playing a different role in guiding the noisy image segmentation. Segmentation experiments on synthetic and real images, especially magnetic resonance (MR) images, are performed to assess the performance of an FCA_NLASC in comparison with GIFP_FCM and fuzzy c-means clustering algorithms with local spatial constraint. Experimental results show that the proposed method is robust to noise in the image and more effective than the comparative algorithms. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:988 / 999
页数:12
相关论文
共 19 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]  
[Anonymous], CYBERN SYST
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[4]  
Bezdek J. C., 1975, P 8 ANN INT C NUM TA, P143
[5]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[6]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[7]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[8]   Fuzzy c-means clustering with spatial information for image segmentation [J].
Chuang, KS ;
Tzeng, HL ;
Chen, S ;
Wu, J ;
Chen, TJ .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) :9-15
[9]   Suppressed fuzzy C-means clustering algorithm [J].
Fan, JL ;
Zhen, WZ ;
Xie, WX .
PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) :1607-1612
[10]   Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation [J].
Hung, Wen-Liang ;
Yang, Miin-Shen ;
Chen, De-Hua .
PATTERN RECOGNITION LETTERS, 2008, 29 (09) :1317-1325