A characterization of the hypercyclically embedded subgroups of finite groups

被引:71
作者
Skiba, Alexander N. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Gomel 246019, BELARUS
关键词
MINIMAL SUBGROUPS; SYLOW SUBGROUPS; PI-QUASINORMALITY; PERMUTABLE SUBGROUPS; MAXIMAL-SUBGROUPS; C-NORMALITY;
D O I
10.1016/j.jpaa.2010.04.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normal subgroup H of a finite group G is said to be hypercyclically embedded in G if every chief factor of G below H is cyclic. The major aim of the present paper is to characterize the normal hypercyclically embedded subgroups E of a group G by means of the embedding of the maximal and minimal subgroups of the Sylow subgroups of the generalized Fitting subgroup of E. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 32 条
[1]  
[Anonymous], 1968, Finite Groups
[2]   INFLUENCE OF PI-QUASINORMALITY ON MAXIMAL-SUBGROUPS OF SYLOW SUBGROUPS OF FITTING SUBGROUP OF A FINITE-GROUP [J].
ASAAD, M ;
RAMADAN, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1991, 56 (06) :521-527
[3]   The influence of minimal subgroups on the structure of finite groups [J].
Asaad, M ;
Csörgö, P .
ARCHIV DER MATHEMATIK, 1999, 72 (06) :401-404
[4]   On maximal subgroups of Sylow subgroups of finite groups [J].
Asaad, M .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3647-3652
[5]  
Baer R., 1959, CAN J MATH, V11, P353
[6]   On minimal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) :335-342
[7]   Finite groups with some C-normal minimal subgroups [J].
Ballester-Bolinches, A ;
Wang, YM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (02) :121-127
[8]  
Ballester-Bolinches A., 2006, MATH ITS APPL, V584
[9]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[10]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891