Constructing high-order functional connectivity network based on central moment features for diagnosis of autism spectrum disorder

被引:10
作者
Xie, Qingsong [1 ]
Zhang, Xiangfei [1 ]
Rekik, Islem [2 ,3 ]
Chen, Xiaobo [1 ]
Mao, Ning [4 ]
Shen, Dinggang [5 ,6 ,7 ]
Zhao, Feng [1 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai, Shandong, Peoples R China
[2] Univ Dundee, Sch Sci & Engn, Comp, Dundee, Scotland
[3] Istanbul Tech Univ, Fac Comp & Informat, BASIRA Lab, Istanbul, Turkey
[4] Yantai Yuhuangding Hosp, Dept Radiol, Yantai, Shandong, Peoples R China
[5] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
[6] Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
[7] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
来源
PEERJ | 2021年 / 9卷
基金
中国国家自然科学基金;
关键词
Autism spectrum disorder; Functional magnetic resonance imaging; Functional connectivity; High functional connectivity network; Low functional connectivity network; Dynamic functional connectivity network; Central moment feature; Feature extraction; Feature selection; Cross validation; CHILDREN; REGRESSION; STRENGTH; CORTEX;
D O I
10.7717/peerj.11692
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The sliding-window-based dynamic functional connectivity network (D-FCN) has been becoming an increasingly useful tool for understanding the changes of brain connectivity patterns and the association of neurological diseases with these dynamic variations. However, conventional D-FCN is essentially low-order network, which only reflects the pairwise interaction pattern between brain regions and thus overlooking the high-order interactions among multiple brain regions. In addition, D-FCN is innate with temporal sensitivity issue, i.e., D-FCN is sensitive to the chronological order of its subnetworks. To deal with the above issues, we propose a novel high-order functional connectivity network framework based on the central moment feature of D-FCN. Specifically, we firstly adopt a central moment approach to extract multiple central moment feature matrices from D-FCN. Furthermore, we regard the matrices as the profiles to build multiple high-order functional connectivity networks which further capture the higher level and more complex interaction relationships among multiple brain regions. Finally, we use the voting strategy to combine the high-order networks with D-FCN for autism spectrum disorder diagnosis. Experimental results show that the combination of multiple functional connectivity networks achieves accuracy of 88.06%, and the best single network achieves accuracy of 79.5%.
引用
收藏
页数:25
相关论文
共 57 条
  • [1] Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients
    Assaf, Michal
    Jagannathan, Kanchana
    Calhoun, Vince D.
    Miller, Laura
    Stevens, Michael C.
    Sahl, Robert
    O'Boyle, Jacqueline G.
    Schultz, Robert T.
    Pearlson, Godfrey D.
    [J]. NEUROIMAGE, 2010, 53 (01) : 247 - 256
  • [2] The Autonomic Brain: An Activation Likelihood Estimation Meta-Analysis for Central Processing of Autonomic Function
    Beissner, Florian
    Meissner, Karin
    Baer, Karl-Juergen
    Napadow, Vitaly
    [J]. JOURNAL OF NEUROSCIENCE, 2013, 33 (25) : 10503 - +
  • [3] Extraction of Dynamic Functional Connectivity From Brain Grey Matter and White Matter for MCI Classification
    Chen, Xiaobo
    Zhang, Han
    Zhang, Lichi
    Shen, Celina
    Lee, Seong-Whan
    Shen, Dinggang
    [J]. HUMAN BRAIN MAPPING, 2017, 38 (10) : 5019 - 5034
  • [4] High-Order Resting-State Functional Connectivity Network for MCI Classification
    Chen, Xiaobo
    Zhang, Han
    Gao, Yue
    Wee, Chong-Yaw
    Li, Gang
    Shen, Dinggang
    [J]. HUMAN BRAIN MAPPING, 2016, 37 (09) : 3282 - 3296
  • [5] Cordes D, 2001, AM J NEURORADIOL, V22, P1326
  • [6] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [7] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [8] Fernell Elisabeth, 2013, Clin Epidemiol, V5, P33, DOI 10.2147/CLEP.S41714
  • [9] Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits
    Floris, Dorothea L.
    Barber, Anita D.
    Nebel, Mary Beth
    Martinelli, Mary
    Lai, Meng-Chuan
    Crocetti, Deana
    Baron-Cohen, Simon
    Suckling, John
    Pekar, James J.
    Mostofsky, Stewart H.
    [J]. MOLECULAR AUTISM, 2016, 7
  • [10] The Global Signal and Observed Anticorrelated Resting State Brain Networks
    Fox, Michael D.
    Zhang, Dongyang
    Snyder, Abraham Z.
    Raichle, Marcus E.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2009, 101 (06) : 3270 - 3283